Wytypowano cechy idealnego robota-sprzątacza
By
KopalniaWiedzy.pl, in Psychologia
-
Similar Content
-
By KopalniaWiedzy.pl
Naturalne jaskinie to ważne cele przyszłych misji NASA. Będą one miejscem poszukiwań dawnego oraz obecnego życia w kosmosie, a także staną się schronieniem dla ludzi, mówi Ali Agha z Team CoSTAR, który rozwija roboty wyspecjalizowane w eksploracji jaskiń. Jak wcześniej informowaliśmy, na Księżycu istnieją gigantyczne jaskinie, w których mogą powstać bazy.
Team CoSTAR, w skład którego wchodzą specjaliści z Jet Propulsion Laboratory i California Instute of Technology to jednym z zespołów, który przygotowuje się do wzięcia udziału w tegorocznych zawodach SubT Challenge organizowanych przez DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).
CoSTAR wygrał ubiegłoroczną edycję SubT Urban Circuit, w ramach której roboty eksplorowały tunele stworzone przez człowieka. Teraz coś na coś trudniejszego i mniej przewidywalnego. Czas na naturalne jaskinie i tunele.
Specjaliści z CoSTAR i ich roboty pracują w jaskiniach w Lava Beds National Monument w północnej Kalifornii. Jaskiniowa edycja Subterranean Challenge jest dla nas szczególnie interesująca, gdyż lokalizacja taka bardzo dobrze pasuje do długoterminowych planów NASA. Chce ona eksplorować jaskinie na Księżycu i Marsie, w szczególności jaskinie lawowe, które powstały w wyniku przepływu lawy. Wiemy, że takie jaskinie istnieją na innych ciałach niebieskich. Kierowany przez Jen Blank zespół z NASA prowadził już testy w jaskiniach lawowych i wybrał Lava Beds National Monument jako świetny przykład jaskiń podobnych do tych z Marsa. Miejsce to stawia przed nami bardzo zróżnicowane wyzwania. Jest tam ponad 800 jaskiń, mówi Ben Morrell z CoSTAR.
Eksperci zwracają uwagę, że istnieje bardzo duża różnica w dostępności pomiędzy tunelami stworzonymi przez człowieka, a naturalnymi jaskiniami. Z jednej strony struktury zbudowane ludzką ręką są bardziej rozwinięte w linii pionowej, są wielopiętrowe, z wieloma poziomami, schodami, przypominają labirynt. Jaskinie natomiast charakteryzuje bardzo trudny teren, który stanowi poważne wyzwanie nawet dla ludzi. Są one trudniej dostępne, z ich eksploracją wiąże się większe ryzyko, są znacznie bardziej wymagające dla systemów unikania kolizji stosowanych w robotach.
Agha i Morrell mówią, że jaskinie lawowe ich zaskoczyły. Okazały się znacznie trudniejsze niż sądzili. Stromizny stanowią duże wyzwanie dla robotów. Powierzchnie tych jaskiń są niezwykle przyczepne. To akurat korzystne dla robotów wyposażonych w nogi, jednak roboty na kołach miały tam poważne problemy. Przed urządzeniami stoją tam zupełnie inne wyzwania. Zamiast rozpoznawania schodów i urządzeń, co było im potrzebne w tunelach budowanych przez człowieka, muszą radzić sobie np. z nagłymi spadkami czy obniżającym się terenem.
Miejskie tunele są dobrze rozplanowane, nachylone pod wygodnymi kątami, z odpowiednimi zakrętami, prostymi korytarzami i przejściami. Można się tam spodziewać równego podłoża, wiele rzeczy można z góry zaplanować. W przypadku jaskiń wielu rzeczy nie można przewidzieć.
Celem SubT Challenge oraz zespołu CoSTAR jest stworzenie w pełni autonomicznych robotów do eksploracji jaskiń. I cel ten jest coraz bliżej.
Byliśmy bardzo szczęśliwi, gdy podczas jednego z naszych testów robot Spot [Boston Dynamics – red.] w pełni autonomicznie przebył całą jaskinię. Pełna autonomia to cel, nad którym pracujemy zarówno na potrzeby NASA jak i zawodów, więc pokazanie, że to możliwe jest wielkim sukcesem, mówi Morrell. Innym wielkim sukcesem było bardzo łatwe przełożenie wirtualnego środowiska, takiego jak systemy planowania, systemy operacyjne i autonomiczne na rzeczywiste zachowanie się robota, dodaje. Jak jednak przyznaje, zanotowano również porażki. Roboty wyposażone w koła miały problemy w jaskiniach lawowych. Dochodziło do zużycia podzespołów oraz poważnych awarii sprzętu. Ze względu na epidemię trudno było sobie z nimi poradzić w miejscu testów, stwierdza ekspert.
« powrót do artykułu -
By KopalniaWiedzy.pl
Badacze z Rutgers University stworzyli kierowanego USG robota do pobierania krwi, który radził sobie z tym zadaniem tak samo dobrze, a nawet lepiej niż ludzie. Odsetek skutecznych procedur wyliczony dla 31 pacjentów wynosił 87%. Dla 25 osób z łatwo dostępnymi żyłami współczynnik powodzenia sięgał zaś aż 97%.
W urządzeniu znajduje się analizator hematologiczny z wbudowaną wirówką. Może ono być wykorzystywane przy łóżkach pacjentów, a także w karetkach czy gabinetach lekarskich.
Wenopunkcja, czyli nakłuwanie żyły, by wprowadzić igłę bądź cewnik, to częsta procedura medyczna. W samych Stanach rocznie przeprowadza się ją ponad 1,4 mld razy. Wcześniejsze badania wykazały, że nie udaje się to u 27% pacjentów z niewidocznymi żyłami, 40% osób bez żył wyczuwalnych palpacyjnie i u 60% wyniszczonych chorych.
Powtarzające się niepowodzenia związane z wkłuciem pod kroplówkę zwiększają ryzyko zakażeń czy zakrzepicy. Czas poświęcany na przeprowadzenie procedury się wydłuża, rosną koszty i liczba zaangażowanych w to osób.
Takie urządzenie jak nasze może pomóc pracownikom służby zdrowia szybko, skutecznie i bezpiecznie pozyskać próbki, zapobiegając w ten sposób niepotrzebnym komplikacjom i bólowi towarzyszącemu kolejnym próbom wprowadzenia igły - podkreśla doktorant Josh Leipheimer.
W przyszłości urządzenie może być wykorzystywane w takich procedurach, jak cewnikowanie dożylne, dializowanie czy wprowadzanie kaniuli tętniczej.
Kolejnym etapem prac ma być udoskonalenie urządzenia, tak by zwiększyć odsetek udanych procedur u pacjentów z trudno dostępnymi żyłami. Jak podkreślają Amerykanie, dane uzyskane w czasie tego studium zostaną wykorzystane do usprawnienia sztucznej inteligencji w robocie.
« powrót do artykułu -
By KopalniaWiedzy.pl
Robot z piórami gołębia to najnowsze dzieło naukowców z Uniwersytetu Stanforda. Korzysta ono z dodatkowego elementu, ułatwiającego ptakom latanie – możliwości manipulowania rozstawem piór i kształtem skrzydeł.
David Lentink ze Stanforda przyglądał się sposobowi pracy skrzydeł, poruszając skrzydłami martwego gołębia. Zauważył, że najważniejszy dla zmiany kształtu skrzydeł są kąty poruszania się dwóch stawów: palca i nadgarstka. To dzięki ich zmianie sztywne pióra zmieniają kształt tak, że zmienia się cały układ skrzydeł, co znakomicie pomaga w kontroli lotu.
Korzystając z tych doświadczeń Lentink wraz z zespołem zbudowali robota, którego wyposażyli w prawdziwe pióra gołębia.
Robot to urządzenie badawcze. Dzięki niemu naukowcy z USA mogą prowadzić eksperymenty bez udziału zwierząt. Zresztą wielu testów i tak nie udało by się przeprowadzić wykorzystując zwierzęta. Na przykład uczeni zastanawiali się, czy gołąb może skręcać poruszając palcem tylko przy jednym skrzydle.
Problem w tym, że nie wiem, jak wytresować ptaka, by poruszył tylko jednym palcem, a jestem bardzo dobry w tresurze ptaków, mówi Lentink, inżynier i biolog z Uniwersytetu Stanforda. Robotyczne skrzydła rozwiązują ten problem. Testy wykazały, że zgięcie tylko jednego z palców pozwala robotowi na wykonanie zakrętu, a to wskazuje, że ptaki również mogą tak robić.
Uczeni przeprowadzili też próby chcąc się dowiedzieć, jak ptaki zapobiegają powstaniu zbyt dużych przerw pomiędzy rozłożonymi piórami. Pocierając jedno pióro o drugie zauważyli, że początkowo łatwo się one z siebie ześlizgują, by później się sczepić. Badania mikroskopowe wykazały, że na krawędziach piór znajdują się niewielkie haczyki zapobiegające ich zbytniemu rozłożeniu. Gdy pióra znowu się do siebie zbliżają, haczyki rozczepiają się. W tym tkwi ich tajemnica. Mają kierunkowe rzepy, które utrzymują pióra razem, mówi Lentink.
Uczeni, aby potwierdzić swoje spostrzeżenia, odwrócili pióra i tak skonstruowane skrzydło umieścili w tunelu aerodynamicznym. Pęd powietrza utworzył takie przerwy między piórami, że wydajność skrzydła znacznie spadła.
« powrót do artykułu -
By KopalniaWiedzy.pl
Profesor Alon Chen stanął na czele dwóch grup badawczych – jednej z Wydziału Neurobiologii Instytutu Nauki im. Weizmanna, drugiej z Instytutu Psychiatrii im. Maxa Plancka – których celem było zbadania osobowości myszy. Chcieli dzięki temu opracować zestaw obiektywnych skal pomiarowych, który z kolei pozwoliłby lepiej zrozumieć to, co czyni zwierzęta indywidualnościami i odpowiedzieć na pytania dotyczące związku pomiędzy genami a zachowaniem. Wyniki ich badań zostały opublikowane w Nature Nerroscience.
Naukowcy wciąż spierają się o to, jak genetyka wpływ a na nasze zachowania. Osobowość może być czymś, co spaja genetykę i epigenetykę.
Z definicji osobowość jest czymś, co jest zarówno indywidualne, jak i w dużej mierze pozostaje stabilne przez całe życie. U ludzi osobowość określa się na podstawie szczegółowych kwestionariuszy. Zwierzęta ich, oczywiście, nie wypełnią. Zatem ich osobowość, o ile taką posiadają, można określić na podstawie zachowania.
Naukowcy obserwowali kilka grup myszy w warunkach laboratoryjnych. Każde ze zwierząt zostało oznaczone, miało do dyspozycji żywność, schronienie, zabawki itp. Uczeni pozwolili im na pełną swobodę. Zachowanie zwierząt przez wiele dni filmowano, a następnie analizowano. W sumie naukowcy zauważyli 60 różnych rodzajów zachowania, takich jak sposób zbliżania się do innych, pogoń za innymi lub ucieczkę, dzielenie się żywnością lub też odganiania innych od niego, ukrywanie się lub eksplorację terenu itp.
Następnie stworzono algorytm, który na podstawie zachowań miał określić osobowość każdej z myszy. Działało to nieco podobnie jak algorytmy do wyznaczania osobowości ludzi. Jak pamiętamy, u ludzi istnieje pięć czynników osobowości: neurotyczność, ekstrawersja, otwartość na doświadczenie, ugodowość i sumienność. Każdy z nich ma też swoje przeciwieństwo. Dla każdego z tych czynników przyznaje się na skali pewną liczbę punktów i na tej podstawie określa osobowość.
Okazało się, że u myszy istnieją cztery czynniki osobowości. Również i u nich każdy z nich ma swoje przeciwieństwo. Gdy każdemu z zachowań każdej z myszy przyznano odpowiednie liczby punktów, okazało się, że myszy mają indywidualne osobowości, na podstawie których można przewidzieć ich zachowania.
Jednak, jak pamiętamy, osobowość jest generalnie czymś niezmiennym. Naukowcy postanowili sprawdzić, czy tak jest też w przypadku myszy. By to zrobić, grupy wymieszano. To stresująca sytuacja dla zwierząt. Uczeni zaobserwowali, że niektóre z zachowań zwierząt się zmieniły, czasem zmiana była dramatyczna, jednak gdy obliczono punkty dla takich zachowań okazało się, że osobowości pozostały te same.
Na podstawie opracowanych przez siebie liniowych skal uczeni stworzyli trójkąt osobowości, w którego rogach znajdowały się zachowania archetypiczne. Na przykład dla myszy wiejskich zachowaniem archetypicznym jest unikanie ludzi i nieżerowanie w ich obecności. Myszy miejskie są przyzwyczajone do obecności ludzi i wręcz ich szukają, by się przy nich pożywić. Gdy myszy laboratoryjne zbadano za pomocą takiego trójkąta osobowości okazało się, że te zachowania archetypiczne nie są wyuczone, a wrodzone. Zauważyliśmy, że zachowania te, wraz z wszelkimi swoimi odcieniami, są naturalne. Nie zaniknęły one u naszych myszy, mimo że od wielu pokoleń żyją one w laboratorium i prawdopodobnie nie przeżyłyby na wolności, mówi doktor Oren Forkosh.
Kolejne analizy wykazały istnienie w mózgach myszy wzorców ekspresji genów, które pozwoliły naukowcom na zidentyfikowanie wielu genów powiązanych z konkretnymi czynnikami osobowości.
Nasza metoda otwiera nowe możliwości badawcze. Jeśli będziemy w stanie zidentyfikować geny leżące u podstaw czynników osobowości i dowiemy się, w jaki sposób zachodzi dziedziczenie pewnych aspektów osobowości, będziemy w stanie diagnozować i leczyć problemy związane z nieprawidłowym działaniem tych genów. Być może w przyszłości uda się nawet stworzyć spersonalizowaną psychiatrię. Na przykład bylibyśmy w stanie przepisać zindywidualizowaną terapię dla osoby z depresją. Ponadto możemy użyć tej metody do porównywania osobowości wśród różnych gatunków, a to pozwoliłoby nam więcej dowiedzieć się o zwierzętach, z którymi współdzielimy świat, dodaje Forkosh.
« powrót do artykułu -
By KopalniaWiedzy.pl
Inżynierowie z amerykańsko-chińskiego zespołu zbudowali miękkiego robota z funkcjami neurobiomimetycznymi. Naukowcy twierdzą, że to pierwszy krok w kierunku bardziej złożonego sztucznego układu nerwowego.
Prof. Cunjiang Yu z Uniwersytetu w Houston podkreśla, że dzięki temu w przyszłości powstaną protezy, które będą się bezpośrednio łączyć z nerwami obwodowymi w tkankach biologicznych, zapewniając sztucznym kończynom funkcje neurologiczne. Osiągnięcie autorów publikacji z pisma Science Advances przybliża też perspektywę miękkich robotów, które będą potrafiły myśleć i podejmować decyzje.
Akademicy z ekipy Yu dodają, że ich odkrycia przydadzą się zarówno specjalistom z dziedziny neuroprotetyki, jak i obliczeń neuromorficznych (chodzi o przetwarzanie dużych ilości danych przy niewielkim zużyciu energii; a wszystko to za pomocą urządzeń naśladujących elektryczne działanie sieci nerwowych).
Czerpiąc inspiracje z natury, naukowcy zaprojektowali tranzystory synaptyczne, czyli tranzystory działające podobnie do neuronów, które spełniają swoje funkcje nawet po rozciągnięciu o 50%.
Podczas testów tranzystor umożliwiał np. powstanie potencjału postsynaptycznego pobudzającego czy zjawiska facylitacji (ang. paired-pulse facilitation, PPF), a także realizował funkcje pamięciowe.
Koniec końców miękki robot został wyposażony w odkształcalną sztuczną skórę z gumy wrażliwej na nacisk i tranzystorów synaptycznych. Dzięki temu był w stanie "wyczuwać" interakcje ze środowiskiem zewnętrznym i odpowiednio na nie reagować.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.