Sign in to follow this
Followers
0

Ważne odkrycie dotyczące zachowania polarytonów
By
KopalniaWiedzy.pl, in Technologia
-
Similar Content
-
By KopalniaWiedzy.pl
Naukowcy z Politechniki Wrocławskiej i Uniwersytetu w Würzburgu pochwalili się na łamach Nature Communications dokonaniem przełomu na polu badań kwantowych. Po raz pierwszy w historii udało się uzyskać ekscytony w izolatorze topologicznym. W skład zespołu naukowego weszli Marcin Syperek, Paweł Holewa, Paweł Wyborski i Łukasz Dusanowski z PWr., a obok naukowców z Würzburga wspomagali ich uczeni z Uniwersytetu w Bolonii i Oldenburgu.
Izolatory topologiczne to jednorodne materiały, które są izolatorami, ale mogą przewodzić ładunki elektryczne na swojej powierzchni, a wystąpienie przewodnictwa nie jest związane ze zmianą fazy materiału, np. z jego utlenianiem się. Pojawienie się przewodnictwa związane jest ze zjawiskami kwantowymi występującymi na powierzchni takich izolatorów. Istnienie izolatorów topologicznych zostało teoretycznie przewidziane w 1985 roku, a eksperymentalnie dowiedzione w 2007 roku właśnie na Uniwersytecie w Würzburgu.
Dotychczasowe prace nad wykorzystaniem izolatorów topologicznych koncentrowały się wokół prób kontroli przepływu ładunków elektrycznych za pomocą napięcia. Jeśli jednak izolator był wykonany z cząstek obojętnych elektrycznie, takie podejście nie działało. Naukowcy musieli więc wymyślić coś innego. W tym wypadku tym czymś okazało się światło.
Po raz pierwszy udało się wygenerować kwazicząstki – tak zwane ekscytony – w izolatorze topologicznym i eksperymentalnie udowodnić ich istnienie. W ten sposób uzyskaliśmy nowe narzędzie, za pomocą którego możemy – metodami optycznymi – kontrolować elektrony. Otworzyliśmy nowy kierunek badań nad izolatorami topologicznymi, mówi profesor Ralph Claessen.
Ekscyton to kwazicząstka, która stanowi parę elektron-dziura połączoną siłami elektrostatycznymi. Uzyskaliśmy ekscytony oddziałując krótkimi impulsami światła na jednoatomową warstwę materiału, mówi profesor Claessen. Przełomowy tutaj jest fakt, że materiałem tym był izolator topologiczny. Dotychczas nie udawało się w nim uzyskać ekscytonów. W tym przypadku izolator zbudowany był z bizmutu, którego atomy ułożono w strukturę plastra miodu.
Całość badań optycznych przeprowadzono w Laboratorium Optycznej Spektroskopii Nanostruktur Politechniki Wrocławskiej.
Osiągnięcie to jest o tyle istotne, że od około 10 lat specjaliści badają ekscytony w dwuwymiarowych półprzewodnikach, chcąc wykorzystać je w roli nośników informacji kontrolowanych światłem. Teraz za pomocą światła uzyskaliśmy ekscytony w izolatorze topologicznym. Reakcje zachodzące pomiędzy światłem a ekscytonami mogą prowadzić do pojawienia się nowych zjawisk w takich materiałach. To zaś można będzie wykorzystać, na przykład, do uzyskiwania kubitów, wyjaśnia Claessen. Kubity, czyli kwantowe bity, to podstawowe jednostki informacji w komputerach kwantowych. Badania polsko-niemieckiego zespołu mogą więc doprowadzić do powstania nowych kontrolowanych światłem podzespołów dla komputerów kwantowych.
« powrót do artykułu -
By KopalniaWiedzy.pl
Światło posiada niezwykle interesującą cechę. Jego fale o różnej długości nie wchodzą ze sobą w interakcje. Dzięki temu można jednocześnie przesyłać wiele strumieni danych. Podobnie, światło o różnej polaryzacji również nie wchodzi w interakcje. Zatem każda z polaryzacji mogłaby zostać wykorzystana jako niezależny kanał przesyłania i przechowywania danych, znakomicie zwiększając gęstość informacji.
Naukowcy z Uniwersytetu Oksfordzkiego poinformowali właśnie o opracowaniu metody wykorzystania polaryzacji światła do zmaksymalizowania gęstości danych. Wszyscy wiemy, że przewaga fotoniki nad elektronika polega na tym, że światło przemieszcza się szybciej i jest bardziej funkcjonalne w szerokich zakresach. Naszym celem było wykorzystanie wszystkich zalet fotoniki połączonych z odpowiednim materiałem, dzięki czemu chcieliśmy uzyskać szybsze i gęstsze przetwarzanie informacji, mówi główny autor badań, doktorant June Sang Lee.
Jego zespół, we współpracy z profesorem C. Davidem Wrightem z University of Exeter, opracował nanowłókno HAD (hybrydyzowane-aktywne-dielektryczne). Każde z nanowłókien wyróżnia się selektywną reakcją na konkretny kierunek polaryzacji, zatem możliwe jest jednoczesne przetwarzanie danych przenoszonych za pomocą różnych polaryzacji. Stało się to bazą do stworzenia pierwszego fotonicznego procesora wykorzystującego polaryzację światła. Szybkość obliczeniowa takiego procesora jest większa od procesora elektronicznego, gdyż poszczególne nanowókna są modulowane za pomocą nanosekundowych impulsów optycznych. Nowy układ może być ponad 300-krotnie bardziej wydajny niż współczesne procesory.
To dopiero początek tego, co możemy osiągnąć w przyszłości, gdy uda się nam wykorzystać wszystkie stopnie swobody oferowane przez światło, w tym polaryzację. Dzięki temu uzyskamy niezwykły poziom równoległego przetwarzania danych. Nasze prace wciąż znajdują się na bardzo wczesnym etapie, dlatego też szacunki dotyczące prędkości pracy takiego układu wciąż wymagają eksperymentalnego potwierdzenia. Mamy jednak niezwykle ekscytujące pomysły łączenia elektroniki, materiałów nieliniowych i komputerów, komentuje profesor Harish Bhakaran, który od ponad 10 lat prowadzi prace nad wykorzystaniem światła w technologiach obliczeniowych.
Ze szczegółami pracy można zapoznać się w artykule Polarisation-selective reconfigurability in hybridized-active-dielectric nanowires opublikowanym na łamach Science Advances.
« powrót do artykułu -
By KopalniaWiedzy.pl
Po raz pierwszy udało się dwukrotnie wykryć poruszający się pojedynczy foton, nie niszcząc go przy tym. To ważna osiągnięcie, gdyż dotychczas foton ulegał zwykle zniszczeniu podczas jego rejestrowania. Najnowsze osiągnięcie może przyczynić się do powstania szybszych i bardziej odpornych na zakłócenia sieci optycznych i komputerów kwantowych.
Zwykle wykrycie fotonu wiąże się z jego zaabsorbowaniem. Jednak foton może nieść ze sobą cenne informacje, a w takich przypadkach specjaliści woleliby mieć możliwość odczytania tych danych i przepuszczenia fotonu dalej, do miejsca docelowego. Żadna metoda detekcji nie jest w 100% skuteczna, zawsze istnieje ryzyko, że coś się prześliźnie niewykryte, mówi jeden z autorów badań, Stephan Welte, fizyk kwantowy z Instytutu Optyki Kwantowej im. Maxa Plancka w niemieckim Garching. Dlatego też możliwość niedestrukcyjnego wykrywania fotonów jest tak ważna – ustawienie detektorów jeden za drugim zwiększa szanse, że wykryjemy wszystkie interesujące nas fotony.
Dotychczas opracowano różne sposoby wykrywania fotonu bez jego niszczenia. Często polegają one na interakcji fotonu z jonem, nadprzewodzącym kubitem lub innymi systemami kwantowymi. Jednak w ten sposób możemy albo wykonać pojedynczą niedestrukcyjną rejestrację poruszającego się fotonu, albo liczne niedestrukcyjne odczyty stacjonarnego fotonu uwięzionego we wnęce.
Teraz naukowcy z Niemiec dwukrotnie wykryli pojedynczy foton wędrujący światłowodem. Wykorzystali w tym celu skonstruowany przez siebie niedestrukcyjny detektor zbudowany z pojedynczego atomu rubidu uwięzionego w odbijającej wnęce. Foton, wpadając do wnęki, odbija się od jej ścian, zmieniając stan kwantowy atomu, co można wykryć za pomocą lasera. Uczeni umieścili dwa takie detektory w odległości 60 metrów od siebie. Wykryły one ten sam foton, nie absorbując go. Welte mówi, że teoretycznie można w ten sposób wykryć pojedynczy foton nieskończoną liczbę razy, jednak w praktyce istnienie 33-procentowe ryzyko, że użycie detektora spowoduje utratę fotonu.
Nowa technologia może w przyszłości pozwolić na śledzenie trasy fotonów. Pozwoli to na przyspieszenie pracy systemów kwantowych, gdyż będziemy w stanie upewniać się, że zakodowane w fotonach informacje dotrą tam, gdzie powinny.
Powiedzmy, że chcesz wysłać kwantową informację z Monachium do Nowego Jorku. Możesz w międzyczasie wielokrotnie sprawdzać, czy foton nie został po drodze utracony, np. sprawdzając, czy dotarł do Paryża. Jeśli okaże się, że foton zgubił się po drodze, można będzie natychmiast wysłać go ponownie. Nie trzeba będzie czekać na zakończenie całej transmisji, by upewnić się, że wszystko poszło tak, jak powinno, wyjaśnia główny autor badań, Emanuele Distante.
Twórcy nowych detektorów uważają, że nie można ich będzie wykorzystać do podsłuchania kwantowej komunikacji. To jak śledzenie przesyłek. Możesz dowiedzieć się, gdzie jest paczka, ale nic nie wiesz o jej zawartości. Foton zawiera w sobie pewną kwantową informację. Możesz w sposób niedestrukcyjny go wykryć, ale nie odczytać, stwierdza Welte.
« powrót do artykułu -
By KopalniaWiedzy.pl
Grupa naukowców z Uniwersytetu w Oksfordzie donosi o udanym splątaniu bakterii z fotonami. W październikowym numerze Journal of Physics ukazał się artykuł zespołu pracującego pod kierunkiem Chiary Marletto, który przeanalizował eksperyment przeprowadzony w 2016 roku przez Davida Colesa i jego kolegów z University of Sheffield.
Podczas wspomnianego eksperymentu Coles wraz z zespołem umieścili kilkaset chlorobakterii pomiędzy dwoma lustrami i stopniowo zmniejszali odległość pomiędzy nimi tak, aż dzieliło je zaledwie kilkaset nanometrów. Odbijając białe światło pomiędzy lustrami naukowcy chcieli spowodować, by fotosyntetyczne molekuły w bakteriach weszły w interakcje z dziurą, innymi słowy, bakterie miały ciągle absorbować, emitować i ponownie absorbować odbijające się fotony. Eksperyment okazał się sukcesem. Sześć bakterii zostało w ten sposób splątanych z dziurą.
Jednak Marletto i jej zespół twierdzą, że podczas eksperymentu zaszło coś więcej, niż jedynie połączenie bakterii z dziurą. Przeprowadzone analizy wykazały, że sygnatura energetyczna pojawiająca się podczas eksperymentu jest właściwa dla splątania molekuł wewnątrz bakterii e światłem. Wydaje się, że niektóre fotony jednocześnie trafiały w molekuły i je omijały, a to właśnie dowód na splątanie.
Nasze modele dowodzą, że zanotowano sygnaturę splątania pomiędzy światłem a bakterią, mówi pani Marletto. Po raz pierwszy udało się dokonać splątania kwantowego w żywym organizmie.
Istnieje jednak wiele zastrzeżeń, mogących podważać wnioski grupy Marletto. Po pierwsze i najważniejsze, dowód na splątanie zależy od tego, w jaki sposób zinterpretujemy interakcję światła z bakterią. Marletto i jej grupa zauważają, że zjawisko to można opisać też na gruncie klasycznego modelu, bez potrzeby odwoływania się do efektów kwantowych. Jednak, jak zauważają, nie można tego opisać modelem „półklasycznym”, w którym do bakterii stosujemy zasady fizyki newtonowskiej, a do fotonu fizykę kwantową To zaś wskazuje, że mieliśmy do czynienia z efektami kwantowymi dotyczącymi zarówno bakterii jak i fotonu. To trochę dowód nie wprost, ale sądzę, że wynika to z faktu, iż oni próbowali bardzo rygorystycznie podejść do tematu i nie wysuwali twierdzeń na wyrost, mówi James Wootton z IBM Zurich Research Laboratory, który nie był zaangażowany w badania.
Z kolei Simon Gröblacher z Uniwersytetu Technologicznego w Delft zwraca uwagę na kolejne zastrzeżenie. Otóż energię bakterii i fotonu zmierzono wspólnie, nie osobno. To pewne ograniczenie, ale wydaje się, że miały tam miejsce zjawiska kwantowe. Zwykle jednak gdy chcemy dowieść splątania, musimy osobno zbadać oba systemy.
Wiele zespołów naukowych próbuje dokonać splątania z udziałem organizmów żywych. Sam Gröblacher zaprojektował eksperyment, w którym chce umieścić niesporczaki w superpozycji. Chodzi o to, by zrozumieć nature rzeczy i sprawdzić czy efekty kwantowe są wykorzystywane przez życie. W końcu u swoich podstaw wszystko jest kwantem, wyjaśnia współpracownik Marletto, Tristan Farrow.
« powrót do artykułu -
By KopalniaWiedzy.pl
Po dziesięciu latach pracy naukowcom z Princeton University udało się skonstruować system, który pozwala na kontrolowanie spinu elektronów w krzemie nawet przez 10 sekund. Wydłużenie czasu, w którym można kontrolować spin elektronów jest niezbędne do skonstruowania praktycznego komputera kwantowego. Dotychczas udawało się utrzymać spin elektronów przez ułamki sekund. Stany kwantowe są bardzo nietrwałe i pod wpływem czynników zewnętrznych dochodzi do ich utraty, czyli dekoherencji. Kwantowy bit, na którym mają pracować kwantowe komputery, traci swoje właściwości i staje się „zwykłym“ bitem, przyjmującym w danym momencie tylko jedną wartość, zamiast wcześniejszych wszystkich możliwych wartości.
Profesor Stephen Lyon i Alexei Tyryshkin, który są autorami najnowszego osiągnięcia, mówią, że kluczem do sukcesu było użycie niezwykle czystej próbki krzemu-28. Częściowo zawdzięczamy to udoskonaleniu metody pomiaru, ale większość zależy od materiału. To najczystsza próbka, jakiej dotychczas używaliśmy - mówi Lyon.
Naukowcy zamknęli kawałek krzemu-28 w stalowym cylindrze wypełnionym helem. Wewnątrz panowała temperatura 2 kelwinów. Cylinder znajdował się pomiędzy dwoma pierścieniami, które miały za zadanie kontrolować pole magnetyczne wokół próbki. Po potraktowaniu krzemu mikrofalami doszło do skoordynowania spinów około 100 miliardów elektronów. Zaszła zatem koherencja i została ona utrzymana przez niewiarygodnie długie 10 sekund. Jej utrzymanie jest niezwykle ważne dla komputerów kwantowych, gdyż działające na nich oprogramowanie będzie potrzebowało czasu np. na korekcję błędów czy i operacje na danych. Muszą być one zatem dostępne na tyle długo, by program zakończył pracę z nimi.
Stan kwantowy może zostać zniszczony przez naturalne pole magnetyczne materiałów. Dlatego też zdecydowano się na wykorzystanie krzemu-28, który, w przeciwieństwie do tradycyjnie używanego krzemu-25 ma niezwykle słabe pole magnetyczne.
Projekt rozpoczął się 10 lat temu. Steve przyszedł do mnie i powiedział, żebyśmy wykorzystali próbkę wolną od innych izotopów - wspomina Tyryshkin. Po trzech latach badań uczeni byli wstanie utrzymać koherencję przez 600 mikrosekund. Przez kolejne lata wypróbowywali różne materiały.
W końcu dzięki Avogadro Project, którego celem jest opracowanie nowej definicji kilograma, udało się uzyskać próbkę niezwykle czystego krzemu-28. Międzynarodowa współpraca dała niezwykłe wyniki. Zwykle w krzemie-28 znajduje się nawet 50000 części na milion krzemu-29, do tego dochodzą inne zanieczyszczenia, które mają silne pole magnetyczne. W oczyszczonym krzemie-28 liczba atomów krzemu-29 nie przekracza 50 na milion. Taka próbka była... zbyt czysta. Dodano do niej nieco fosforu, by była ona na tyle aktywna elektrycznie, żeby reagować na mikrofale. To właśnie ta reakcja, którą Lyon i Tyryshkin nazywają „echem“, gdyż są to mikrofale emitowane przez próbkę, pozwala na odczytanie spinu elektronów.
Bardzo trudne było znalezienie odpowiedniej liczby atomów fosforu. Ich zbyt duża liczba oznaczałaby powstanie w próbce zbyt silnego pola magnetycznnego. Z kolei za mało fosforu dałoby zbyt słabe „echo“, którego nie można by odczytać. Istotne było też znaczne obniżenie temperatury próbki, gdyż w temperaturze pokojowej elektrony fosforu są zbyt aktywne. „Uspokajają się“ dopiero w temperaturze bliskiej zeru absolutnemu.
Warto w tym miejscu przypomnieć, że już wcześniej innym zespołom naukowym udało się kontrolować spin elektronów przez równie długi czas. Wykonano nawet pewne operacje matematyczne. Jednak do eksperymentów używano jonów zamkniętych w komorach próżniowych. Lyon i Tyryshkin skupili się na krzemie, gdyż uważają, że jest on znacznie bardziej praktyczny. Współczesna elektronika już wiele dekad temu zrezygnowała przecież z lamp elektronowych na rzecz krzemu.
-
-
Recently Browsing 0 members
No registered users viewing this page.