Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Telefony wykorzystywane przez pacjentów w szpitalu i osoby, które ich odwiedzają, 2-krotnie częściej zawierają niebezpieczne dla zdrowia bakterie niż aparaty pracowników służby zdrowia.

Naukowcy z Wydziału Mikrobiologii Medycznej İnönü Üniversitesi pobrali wymazy z 3 części telefonów komórkowych: klawiatury, mikrofonu i słuchawki. W sumie w studium uwzględniono 200 aparatów. Sześćdziesiąt siedem należało do białego personelu, a 133 do pacjentów i odwiedzających. Okazało się, że chorobotwórcze bakterie udało się wyhodować z 39,6% komórek pacjentów i ich znajomych oraz 20,6% telefonów lekarzy i pielęgniarek. Siedem telefonów pacjentów zawierało wielolekooporne patogeny, w tym Gram-dodatniego metycylinoopornego gronkowca złocistego (MRSA od ang. methicillin-resistant Staphylococcus aureus) i wielolekooporne bakterie Gram-ujemne. Nie występowały one na żadnym z telefonów pracowników służby zdrowia.

Turcy podkreślają, że typy znalezionych bakterii oraz wzorce ich oporności stanowią powód do zmartwień. Niektórzy badacze sugerowali wcześniej, że w warunkach szpitalnych to telefony białego personelu stanowią źródło patogenów, jednak zespół z İnönü Üniversitesi bezsprzecznie wykazał, że to nieprawda i znacznie groźniejsze są komórki pacjentów i ich gości.

W krajach rozwijających się infekcje szpitalne występują u 25% hospitalizowanych osób. W USA rocznie zdarza się 1,7 mln takich zakażeń. Biorąc pod uwagę statystyki oraz wskaźnik śmiertelności, nie powinno dziwić, że naukowcy poświęcają temu zagadnieniu tyle czasu i wysiłków.

Share this post


Link to post
Share on other sites

Nie dziwię się że telefony białego personelu są lepiej odkażone. Wystarczy jechać tramwajem z ubranym po cywilnemu pracownikiem służby zdrowia, by nosem odgadnąć profesję. Nawet przez potowy smrodek innych pasażerów czuć woń środków odkażających.  :)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Superbakteria MRSA – gronkowiec złocisty oporny na metycylinę – to jedno z najpoważniejszych zagrożeń w systemie opieki zdrowotnej. Szczepy MRSA są oporne na wiele antybiotyków. U osób zdrowych wywołują zwykle problemy skórne. Jednak dla osób osłabionych mogą stanowić śmiertelne zagrożenie. MRSA wywołują wiele poważnych infekcji wewnątrzszpitalnych. To najbardziej znani przedstawiciele rozrastającej się rodziny „koszmarnych bakterii”.
      Pierwszy szczep MRSA zidentyfikowano w 1960 roku w Wielkiej Brytanii. W samej Europie powoduje obecnie około 171 000 poważnych infekcji rocznie. Dotychczas sądzono, że przyczyną pojawienia się superbakterii było używanie antybiotyków. Okazuje się jednak, że MRSA mogły pojawić się już 200 lat temu. A to potwierdza wnioski z przeprowadzonych przed 9 laty badań, których autorzy zauważyli, że antybiotykooporność może pojawić się bez kontaktu z antybiotykami.
      Międzynarodowy zespół naukowy, prowadzony przez specjalistów z University of Cambridge, znalazł dowody, że MRSA pojawił się w naturze już 200 lat temu, na długo zanim na masową skalę zaczęliśmy używać antybiotyków u ludzi i w hodowli zwierząt. Zdaniem naukowców oporność na antybiotyki pojawiła się u gronkowca złocistego (Staphylococcus aureus), żyjącego na skórze jeży, na której żyły też grzyby z gatunku Trichophyton erinacei. Grzyby te wytwarzają własne antybiotyki. Na skórze jeży spotkały się więc dwa organizmy, które zaczęły toczyć walkę o przetrwanie.
      To gorzkie przypomnienie, że gdy używamy antybiotyków, powinniśmy robić to rozważnie. W naturze istnieją wielkie rezerwuary, w których mogą przetrwać bakterie oporne na antybiotyki. Z tych rezerwuarów jest bardzo krótka droga do zwierząt hodowlanych, a od nich do ludzi, mówi doktor Mark Homles, jeden z autorów artykułu Emergence of methicillin resistance predates the clinical use of antibiotics, w którym opisano wyniki badań.
      Zostały one przeprowadzone przez wielki zespół naukowy, w skład którego weszli specjaliści z Wielkiej Brytanii, Danii, Szwecji, Hiszpanii, Czech, Francji, Finlandii, Niemiec, USA i Szwajcarii.
      Badania postanowiono rozpocząć, kiedy okazało się, że wiele jeży w Danii i Szwecji jest nosicielami MRSA z genem mecC (mecC-MRSA). To jeden z genów dających bakterii oporność na antybiotyki. mecC-MRSA został po raz pierwszy odkryty u krów mlecznych, a następnie u ludzi, co sugerowało, że do pojawienia się opornego na metycylinę gronkowca złocistego doszło w wyniku powszechnego stosowania antybiotyków u zwierząt hodowlanych, a następnie bakteria przeszła na ludzi. Kolejne badania pokazały, że mecC-MRSA występuje u wielu innych gatunków zwierząt hodowlanych w całej Europie, ale nie tak często, jak u krów. To tylko potwierdziło przypuszczenia, co do źródła pochodzenia superbakterii.
      Jednak odkrycie szerokiego występowania meC-MRSA u jeży skłoniło naukowców do bliższego przyjrzenia się tej kwestii. Autorzy postawili więc hipotezę o naturalnym pochodzeniu MRSA, a wsparciem dla niej były badania przeprowadzone wcześniej w północno-zachodniej Europie i w Nowej Zelandii, z których wiemy, że skóra jeży jest często skolonizowana przez T. erinacei, który wytwarza substancję podobną do penicyliny.
      By sprawdzić hipotezę o naturalnym pochodzeniu MRSA, jej pojawieniu się u jeży i związku pomiędzy MRSA a T. erinacei, naukowcy przeprowadzili szczegółowe badania 244 próbek gronkowca złocistego (S. aureus) pobranych od jeży w Europie i Nowej Zelandii oraz 913 próbek S. aureus pochodzących z innych źródeł. Na tej podstawie spróbowali odtworzyć historię ewolucyjną, dynamikę rozprzestrzeniania się oraz potencjał zoonotyczny mecC-MRSA, czyli zdolność patogenu zwierzęcego do zarażenia ludzi. Badano też potencjał do wystąpienia naturalnej selekcji mecC-MRSA w kierunku antybiotykoopornosci w wyniku oddziaływania T. erinacei.
      Nasze badania wykazały, że jeże są naturalnym rezerwuarem zoonotycznych linii mecC-MRSA, którego pojawienie się poprzedza epokę antybiotyków. To przeczy powszechnie przyjętemu poglądowi, jakoby szeroka antybiotykooporność to fenomen współczesny, który jest napędzany przez wykorzystywanie antybiotyków w medycynie i weterynarii, czytamy w podsumowaniu badań.
      Wykazały one, na przykład, że w Danii mecC-MRSA występuje znacznie częściej u jeży niż u zwierząt hodowlanych, a liczba przypadków zakażeń w tym kraju jest niska. Ponadto większość linii mecC-MRSA brakuje genetycznych markerów adaptacji do infekowania ludzi i przeżuwaczy. Wyraźnym wyjątkiem jest tutaj linia CC425:B3.1, która w Anglii południowo-zachodniej przeszła z jeży na krowy mleczne. Przed naszymi badaniami uważano, że krowy mleczne są najbardziej prawdopodobnym rezerwuarem mecC-MRSA i głównym źródłem zoonozy u ludzi. [...] Obecne badania wskazują, że większość linii rozwojowych mecC-MRSA bierze swój początek u jeży, a krowy mleczne i inne zwierzęta hodowlane prawdopodobnie są pośrednikiem i wektorem zoonotycznych transmisji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W 2010 roku japońska ekspedycja naukowa wybrała się do Wiru Południowopacyficznego (South Pacyfic Gyre). Pod nim znajduje się jedna z najbardziej pozbawionych życia pustyń na Ziemi. W pobliżu centrum SPG znajduje się oceaniczny biegun niedostępności. A często najbliżej znajdującymi się ludźmi są... astronauci z Międzynarodowej Stacji Kosmicznej. Tutejsze wody są tak pozbawione życie, że 1 metr osadów tworzy się tutaj przez milion lat.
      Centrum SPG jest niemal nieruchome, jednak wokół niego krążą prądy oceaniczne, przez które do centrum dociera niewiele składników odżywczych. Niewiele więc tutaj organizmów żywych.
      Japońscy naukowcy pobrali z dna, znajdującego się 6000 metrów pod powierzchnią, rdzeń o długości 100 metrów. Mieli więc w nim osady, które gromadziły się przez 100 milionów lat.
      Niedawno poinformowali o wynikach badań rdzenia. Tak, jak się spodziewali, znaleźli w osadach bakterie, było ich jednak niewiele, od 100 do 3000 na centymetr sześcienny osadów. Później jednak nastąpiło coś, czego się nie spodziewali. Po podaniu pożywienia bakterie ożyły.
      Ożyły i zaczęły robić to, co zwykle robią bakterie, mnożyć się. Dwukrotnie zwiększały swoją liczbę co mniej więcej 5 dni. Powoli, gdyż np. bakterie E.coli dwukrotnie zwiększają w laboratorium swoją liczbę co około 20 minut). Jednak wystarczyło to, by po 68 dniach bakterii było 10 000 razy więcej niż pierwotnie.
      Weźmy przy tym pod uwagę, że mówimy o bakteriach sprzed 100 milionów lat. O mikroorganizmach, które żyły, gdy planeta była opanowana przez dinozaury. Minęły cztery ery geologiczne, a one – chronione przed promieniowaniem kosmicznym i innymi wpływami środowiska przez kilometry wody – czekały w uśpieniu.
      Jeśli teraz uświadomimy sobie, że 70% powierzchni planety jest pokryte osadami morskimi, możemy przypuszczać, że znajduje się w nich wiele nieznanych nam, uśpionych mikroorganizmów sprzed milionów lat.
      Kolejną niespodzianką był fakt, że znalezione przez Japończyków bakterie korzystają z tlenu. Osady, z których je wyodrębniono, są pełne tlenu. Problemem w SPG nie jest zatem dostępność tlenu, a pożywienia.
      To jednak nie koniec zaskoczeń. Okazało się, że wydobyte z osadów bakterie nie tworzą przetrwalników (endosporów). Bakterie przetrwały w inny sposób. Jeszcze większą niespodzianką było znalezienie w jednej z próbek dobrze funkcjonującej populacji cyjanobakterii z rodzaju Chroococcidiopsis. To bakterie potrzebujące światłą, więc zagadką jest, jak przetrwały 13 milionów lat w morskich osadach na głębokości 6000 metrów. Z drugiej strony wiemy, że jest niektórzy przedstawiciele tego rodzaju są wyjątkowo odporni. Tak odporny, że niektórzy mówią o wykorzystaniu ich do terraformowania Marsa.
      Biorąc uwagę niewielkie przestrzenie z powietrzem wewnątrz osadów, brak endosporów i szybkie ożywienie, naukowcy przypuszczają, że bakterie pozostały żywe przez 100 milionów lat, jednak znacząco spowolniły swój cykl życiowy. To zaś może oznaczać, że... są nieśmiertelne.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy stworzył wielką bazę danych wszystkich znanych genomów bakteryjnych obecnych w mikrobiomie ludzkich jelit. Baza umożliwia specjalistom badanie związków pomiędzy genami bakterii a proteinami i śledzenie ich wpływu na ludzkie zdrowie.
      Bakterie pokrywają nas z zewnątrz i od wewnątrz. Wytwarzają one proteiny, które wpływają na nasz układ trawienny, nasze zdrowie czy podatność na choroby. Bakterie są tak bardzo rozpowszechnione, że prawdopodobnie mamy na sobie więcej komórek bakterii niż komórek własnego ciała. Zrozumienie wpływu bakterii na organizm człowieka wymaga ich wyizolowania i wyhodowania w laboratorium, a następnie zsekwencjonowania ich DNA. Jednak wiele gatunków bakterii żyje w warunkach, których nie potrafimy odtworzyć w laboratoriach.
      Naukowcy, chcąc zdobyć informacje na temat tych gatunków, posługują się metagenomiką. Pobierają próbkę interesującego ich środowiska, w tym przypadku ludzkiego układu pokarmowego, i sekwencjonują DNA z całej próbki. Następnie za pomocą metod obliczeniowych rekonstruują indywidualne genomy tysięcy gatunków w niej obecnych.
      W ubiegłym roku trzy niezależne zespoły naukowe, w tym nasz, zrekonstruowały tysiące genomów z mikrobiomu jelit. Pojawiło się pytanie, czy zespoły te uzyskały porównywalne wyniki i czy można z nich stworzyć spójną bazę danych, mówi Rob Finn z EMBL's European Bioinformatics Institute.
      Naukowcy porównali więc uzyskane wyniki i stworzyli dwie bazy danych: Unified Human Gastrointestinal Genome i Unified Gastrointestinal Protein. Znajduje się w nich 200 000 genomów i 170 milionów sekwencji protein od ponad 4600 gatunków bakterii znalezionych w ludzkim przewodzie pokarmowym.
      Okazuje się, że mikrobiom jelit jest nie zwykle bogaty i bardzo zróżnicowany. Aż 70% wspomnianych gatunków bakterii nigdy nie zostało wyhodowanych w laboratorium, a ich rola w ludzkim organizmie nie jest znana. Najwięcej znalezionych gatunków należy do rzędu Comentemales, który po raz pierwszy został opisany w 2019 roku.
      Tak olbrzymie zróżnicowanie Comentemales było wielkim zaskoczeniem. To pokazuje, jak mało wiemy o mikrobiomie jelitowym. Mamy nadzieję, że nasze dane pozwolą w nadchodzących latach na uzupełnienie luk w wiedzy, mówi Alexancre Almeida z EMBL-EBI.
      Obie imponujące bazy danych są bezpłatnie dostępne. Ich twórcy uważają, że znacznie się one rozrosną, gdy kolejne dane będą napływały z zespołów naukowych na całym świecie. Prawdopodobnie odkryjemy znacznie więcej nieznanych gatunków bakterii, gdy pojawią się dane ze słabo reprezentowanych obszarów, takich jak Ameryka Południowa, Azja czy Afryka. Wciąż niewiele wiemy o zróżnicowaniu bakterii pomiędzy różnymi ludzkimi populacjami, mówi Almeida.
      Niewykluczone, że w przyszłości katalogi będą zawierały nie tylko informacje o bakteriach żyjących w naszych jelitach, ale również na skórze czy w ustach.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Związek z liści pięknotki amerykańskiej (Callicarpa americana) wzmacnia aktywność antybiotyków wobec lekoopornych gronkowców. Eksperymenty laboratoryjne wykazały, że w połączeniu z oksacyliną substancja ta niweczy lekooporność metycylinoopornych gronkowców złocistych (ang. methicillin-resistant Staphylococcus aureus, MRSA).
      Pięknotka amerykańska to krzew pochodzący z południowych USA. Jest wykorzystywana w ogrodnictwie jako roślina ozdobna.
      Zdecydowaliśmy się zbadać właściwości chemiczne pięknotki amerykańskiej, ponieważ była ona ważną rośliną leczniczą Indian - podkreśla prof. Cassandra Quave z Emory University.
      Alibamu, Czoktawowie, Krikowie, Koasati czy Seminole wykorzystywali pięknotkę do różnych celów leczniczych. Liście i inne części rośliny gotowano do zastosowania w parówkach; w ten sposób zwalczano np. reumatyzm. Z gotowanych korzeni przygotowywano leki na zawroty głowy, bóle brzucha i zatrzymanie moczu. Z kory z pędów uzyskiwano natomiast miksturę na świąd.
      Poprzednie badania wykazały, że ekstrakty z liści pięknotki odstraszają komary i kleszcze. Wcześniejsze studium zespołu Quave zademonstrowało, że wyciągi z liści hamują wzrost bakterii powodujących trądzik. Tym razem Amerykanie skupili się na testowaniu ekstraktów z liści pod kątem skuteczności wobec MRSA.
      Nawet pojedyncza tkanka roślinna może zawierać setki unikatowych cząsteczek. Ich chemiczne rozdzielenie to mozolny proces. Później przychodzi kolej na testy i ich powtarzanie, by wreszcie znaleźć tę skuteczną.
      Autorzy publikacji z pisma Infectious Diseases odkryli związek, który lekko hamował wzrost MRSA. Należy on do diterpenów typu klerodanu. Ponieważ substancja tylko lekko hamowała MRSA, naukowcy wypróbowali ją w połączeniu z antybiotykami beta-laktamowymi.
      Antybiotyki beta-laktamowe są jednymi z najbezpieczniejszych i najmniej toksycznych w obecnie dostępnym arsenale leków. Niestety, MRSA rozwinęło oporność na nie.
      Testy laboratoryjne wykazały, że związek z liści pięknotki działa synergicznie z oksacyliną, znosząc lekooporność MRSA.
      Kolejnym krokiem będzie przebadanie połączenia ekstraktu i antybiotyku na modelach zwierzęcych. Jeśli wyniki pokażą, że takie połączenie zwalcza zakażenia metycylinoopornym gronkowcem złocistym, naukowcy będą syntetyzować diterpen w laboratorium, żeby poprawić jego budowę chemiczną i w ten sposób zwiększyć skuteczność terapii skojarzonej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W budownictwie od dawna wykorzystuje się materiały pochodzenia biologicznego, np. drewno. Gdy się ich używa, nie są już jednak żywe. A gdyby tak stworzyć żyjący budulec, który jest w stanie się rozrastać, a przy okazji ma mniejszy ślad węglowy? Naukowcy nie poprzestali na zadawaniu pytań i zabrali się do pracy, dzięki czemu uzyskali beton i cegły z bakteriami.
      Zespół z Uniwersytetu Kolorado w Boulder podkreśla, że skoro udało się utrzymać przy życiu pewną część bakterii, żyjące, i to dosłownie, budynki nie są wcale tylko i wyłącznie pieśnią przyszłości.
      Pewnego dnia takie struktury będą mogły, na przykład, same zasklepiać pęknięcia, usuwać z powietrza niebezpieczne toksyny, a nawet świecić w wybranym czasie.
      Na razie technologia znajduje się w powijakach, ale niewykluczone, że kiedyś żyjące materiały poprawią wydajność i ekologiczność produkcji materiałów budowlanych, a także pozwolą im wyczuwać i wchodzić w interakcje ze środowiskiem - podkreśla Chelsea Heveran.
      Jak dodaje Wil Srubar, obecnie wytworzenie cementu i betonu do konstruowania dróg, mostów, drapaczy chmur itp. generuje blisko 6% rocznej światowej emisji dwutlenku węgla.
      Wg Srubara, rozwiązaniem jest "zatrudnienie" bakterii. Amerykanie eksperymentowali z sinicami z rodzaju Synechococcus. W odpowiednich warunkach pochłaniają one CO2, który wspomaga ich wzrost, i wytwarzają węglan wapnia (CaCO3).
      Naukowcy wyjaśnili, w jaki sposób uzyskali LBMs (od ang. living building material, czyli żyjący materiał), na łamach pisma Matter. Na początku szczepili piasek żelatyną, pożywkami oraz bakteriami Synechococcus sp. PCC 7002. Wybrali właśnie żelatynę, bo temperatura jej topnienia i przejścia żelu w zol wynosi ok. 37°C, co oznacza, że jest kompatybilna z temperaturami, w jakich sinice mogą przeżyć. Poza tym, schnąc, żelatynowe rusztowania wzmacniają się na drodze sieciowania fizycznego. LBM trzeba schłodzić, by mogła się wytworzyć trójwymiarowa hydrożelowa sieć, wzmocniona biogenicznym CaCO3.
      Przypomina to nieco robienie chrupiących ryżowych słodyczy, gdy pianki marshmallow usztywnia się, dodając twarde drobinki.
      Akademicy stworzyli łuki, kostki o wymiarach 50x50x50 mm, które były w stanie utrzymać ciężar dorosłej osoby, i cegły wielkości pudełka po butach. Wszystkie były na początku zielone (sinice to fotosyntetyzujące bakterie), ale stopniowo brązowiały w miarę wysychania.
      Ich plusem, poza wspomnianym wcześniej wychwytem CO2, jest zdolność do regeneracji. Kiedy przetniemy cegłę na pół i uzupełnimy składniki odżywcze, piasek, żelatynę oraz ciepłą wodę, bakterie z oryginalnej części wrosną w dodany materiał. W ten sposób z każdej połówki odrośnie cała cegła.
      Wyliczenia pokazały, że w przypadku cegieł po 30 dniach żywotność zachowało 9-14% kolonii bakteryjnych. Gdy bakterie dodawano do betonu, by uzyskać samonaprawiające się materiały, wskaźnik przeżywalności wynosił poniżej 1%.
      Wiemy, że bakterie rosną w tempie wykładniczym. To coś innego niż, na przykład, drukowanie bloku w 3D lub formowanie cegły. Gdybyśmy mogli uzyskiwać nasze materiały [budowlane] na drodze biologicznej, również bylibyśmy w stanie produkować je w skali wykładniczej.
      Kolejnym krokiem ekipy jest analiza potencjalnych zastosowań platformy materiałowej. Można by dodawać bakterie o różnych właściwościach i uzyskiwać nowe materiały z funkcjami biologicznymi, np. wyczuwające i reagujące na toksyny w powietrzu.
      Budowanie w miejscach, gdzie zasoby są mocno ograniczone, np. na pustyni czy nawet na innej planecie, np. na Marsie? Czemu nie. W surowych środowiskach LBM będą się sprawować szczególnie dobrze, ponieważ do wzrostu wykorzystują światło słoneczne i potrzebują bardzo mało materiałów egzogennych. [...] Na Marsa nie zabierzemy ze sobą worka cementu. Kiedy wreszcie się tam wyprawimy, myślę, że naprawdę postawimy na biologię.
      Badania sfinansowała DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...