Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Istotny składnik zwierzęcego układu nerwowego – kanał sodowy – pojawił się w toku ewolucji przed wykształceniem samego układu nerwowego.

Pierwszy układ nerwowy pojawił się u meduzopodobnych zwierząt ok. 600 mln lat temu i sądzono, że kanały sodowe również wyewoluowały w tym czasie. Ostatnio odkryliśmy jednak, że kanały sodowe istniały przed pojawieniem się układów nerwowych – opowiada prof. Harold Zakon z Uniwersytetu Teksańskiego w Austin.

Układ nerwowy i jego podstawowa jednostka budulcowa neuron to istotny krok w ewolucji zwierząt. Umożliwiają one komunikację między komórkami z odległych części organizmu, percepcję zmysłową, zachowanie i rozwój złożonego mózgu. Bramkowane elektrycznie kanały sodowe stanowią zaś integralną część neuronu. Gdy dokomórkowe prądy kationów przeważają nad odkomórkowymi, dochodzi do osiągnięcia potencjału progowego i otwarcia kanałów sodowych. Kationy Na+ depolaryzują błonę i zapoczątkowują tzw. potencjał iglicowy.

Zakon, prof. David Hillis i student Benjamin Liebeskind odkryli, że geny kanałów jonowych występowały w jednokomórkowym organizmie – wiciowcu kołnierzykowym (Choanoflagellata). Naukowcy sporządzili drzewo filogenetyczne, ukazując związek genów występujących u wiciowca Monosiga brevicollis i organizmów wielokomórkowych, włączając w to meduzy, gąbki, muchy i ludzi.

Ponieważ geny kanałów sodowych odnaleziono u wiciowca kołnierzykowego, Amerykanie uważają, że geny te pojawiły się nie tylko przed układem nerwowym, ale także przed wykształceniem wielokomórkowości jako takiej. Geny te zostały "dokooptowane" przy okazji ewoluowania układów nerwowych u wielokomórkowych zwierząt. Opisane studium pokazuje, że złożone cechy, takie jak układ nerwowy, mogą ewoluować stopniowo, często z elementów utworzonych pierwotnie do innych celów. Nowe ewolucyjnie organy nie pojawiają się znikąd, tylko wykorzystują istniejące geny, których zadanie polegało wcześniej na czymś innym – podkreśla Hillis.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mały błąd "meduzopodobnych zwierząt ok. 6 mln lat temu" to by było smutne, że wszystkie wcześniejsze stworzenia były bezmózgowe :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mały błąd "meduzopodobnych zwierząt ok. 6 mln lat temu" to by było smutne, że wszystkie wcześniejsze stworzenia były bezmózgowe :P

 

No tak, wyszło, że np. hominidy nie miały mózgu :) Chodziło, oczywiście, o moment 600 mln lat temu. Dziękuję za zwrócenie uwagi :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Kurde fix, czyżby jakiś ewolucjonista jeszcze sądził, że kilka cech mogło wyewoluować jednocześnie? Toć taka niemożliwość jest koronnym argumentem kreacjonizmu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Kurde fix, czyżby jakiś ewolucjonista jeszcze sądził, że kilka cech mogło wyewoluować jednocześnie? Toć taka niemożliwość jest koronnym argumentem kreacjonizmu.

A kto tak sądzi? Przecież jest napisane, że układ ewoluował stopniowo, a geny kanału jonowego zostały wykorzystane przy okazji.

Koronnym argumentem kreacjonizmu jest nieokreślona istota na "B" :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Gdy naukowcy z University of Chicago i Argonne National Laboratory porównali ponad 15 000 synaps u makaków i myszy, ze zdumieniem zauważyli, że neurony w korze wzrokowej makaków mają od 2 do 5 razy mniej synaps niż neurony u myszy. Różnica wynikać może prawdopodobnie z metabolicznego kosztu utrzymywania synaps. Naczelne uważane są za bardziej inteligentne od gryzoni, tymczasem okazuje się, że w neuronach myszy występuje więcej synaps.
      Po dokonaniu odkrycia naukowcy zasiedli do modelowania komputerowego, które wykazało, że im bardziej rozbudowana sieć neuronów, tym mniej synaps w każdym neuronie. Tworzenie i utrzymanie synaps jest tak kosztowne, że ich liczba jest ograniczana.
      David Freedman z UChicago i Narayanan Kasthuri z Argonne przyjrzeli się zarówno synapsom pobudzającym jak i hamującym. Większość wcześniejszych badań skupiała się na synapsach pobudzających. Za pomocą mikroskopu elektronowego wykonali obrazy 107 neuronów z kory wzrokowej makaków i 81 neuronów kory wzrokowej myszy. Okazało się, że w 107 neuronach makaków występuje niemal 6000 synaps, a w 81 neuronach myszy uczeni naliczyli ponad 9700 synaps. Bliższe analizy wykazały, że neurony makaków posiadają od 2 do 5 razy mniej połączeń synaps niż neurony myszy.
      To zaskakujące dlatego, że zarówno w neurologii jak i wśród ogółu społeczeństwa przyjęło się założenie, że im więcej połączeń między neuronami, tym wyższa inteligencja. Ta praca jasno pokazuje, że pomimo iż w mózgach naczelnych występuje większa liczba połączeń, to jeśli policzymy je nie ogólnie, a na poziomie pojedynczych neuronów, to naczelne mają mniej synaps. Jednocześnie wiemy, że neurony naczelnych są w stanie wykonywać działania, do których neurony myszy nie są zdolne. To zaś rodzi interesujące pytania, na przykład o konsekwencje budowy większych sieci neuronowych, takich jakie widzimy u naczelnych, wyjaśnia doktor Gregg Wildenberg z Argonne.
      Zawsze sądziliśmy, że zagęszczenie synaps u naczelnych będzie podobne do zagęszczenia u gryzoni, a może nawet większe, gdyż z mózgu naczelnych jest więcej miejsca i więcej neuronów. Jednak w świetle tego zaskakującego odkrycia musimy się zastanowić, dlaczego neurony naczelnych tworzą mniej połączeń niż się spodziewaliśmy. Sądzimy, że może to być skutkiem ewolucji. Być może różnica wynika z energetycznego kosztu utrzymania mózgu. Stworzyliśmy więc model sztucznej sieci neuronowej i ją trenowaliśmy, ale nałożyliśmy na nią ograniczenia narzucane przez metabolizm w prawdziwych mózgach. Chcieliśmy zobaczyć, jak wpłynie to na ilość połączeń w tworzącej się sieci, mówi Matt Rosen, który pomagał w modelowaniu komputerowym.
      Stworzony model uwzględniał dwa potencjalne koszty metaboliczne. Pierwszy to koszt pojedynczego sygnału elektrycznego przesyłanego między neuronami. Jest on bardzo duży. Drugi z uwzględnionych kosztów to koszt zbudowania i utrzymania synaps.
      Dzięki takiemu modelowi odkryli, że im więcej neuronów w sieci, tym większy koszt metaboliczny działania takiej sieci i tym większe ograniczenia w tworzeniu i utrzymywaniu synaps, co skutkuje ich zmniejszoną gęstością.
      Masa mózgu to jedynie około 2,5% masy ciała, jednak zużywa on około 20% całej energii organizmu. To bardzo kosztowny organ. Uważa się, że większość tej energii mózg przeznacza na synapsy, zarówno na komunikację między nimi, jak i na ich budowę i utrzymanie, dodaje Wildenberg.
      Niezwykłe odkrycie pomoże w przyszłych badaniach. Myślę, że wszyscy neurobiolodzy chcieliby zrozumieć, co czyni nas ludźmi. Co odróżnia nas od innych naczelnych i od myszy. Konektomika badania anatomię układu nerwowego na poziomie poszczególnych połączeń. Wcześniej nie rozumieliśmy dobrze, gdzie na tym poziomie znajdują się różnice, które mogłyby wyjaśnić ewolucję różnych rodzajów mózgu. Każdy mózg zbudowany jest z neuronów i każdy neuron łączy się i komunikuje z innymi neuronami. Jak więc ewolucja stworzyła różne mózgi? Trzeba przebadać wiele różnych gatunków, by zacząć rozumieć, co tutaj się stało.
      Ponadto lepsze zrozumienie zagęszczenia synaps, a zwłaszcza stosunku synaps pobudzających i hamujących, może pomóc w ustaleniu podstaw występowania takich chorób jak autyzm czy choroba Parkinsona. Jeśli zbadamy stosunek synaps pobudzających do hamujących u myszy i założymy, że jest on taki sam dla wszystkich gatunków, może to wpłynąć na rozumienie takich chorób. Znaleźliśmy różnice w stosunku synaps pobudzających i hamujących pomiędzy myszami a makakami. Teraz musimy się zastanowić, jakie ma to przełożenie na mysie modele chorób neurologicznych dotykających człowieka, dodaje Wildenberg.
      Szczegółowy opis badań został opublikowany na łamach Cell Reports.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przeciętne 12-miesięczne dziecko w Danii ma w swojej florze jelitowej kilkaset genów antybiotykooporności, odkryli naukowcy z Uniwersytetu w Kopenhadze. Obecność części tych genów można przypisać antybiotykom spożywanym przez matkę w czasie ciąży.
      Każdego roku antybiotykooporne bakterie zabijają na całym świecie około 700 000 osób. WHO ostrzega, że w nadchodzących dekadach liczba ta zwiększy się wielokrotnie. Problem narastającej antybiotykooporności – powodowany przez nadmierne spożycie antybiotyków oraz przez masowe stosowanie ich w hodowli zwierząt – grozi nam poważnym kryzysem zdrowotnym. Już w przeszłości pisaliśmy o problemie „koszmarnych bakterii” czy o niezwykle wysokim zanieczyszczeniu rzek antybiotykami.
      Duńczycy przebadali próbki kału 662 dzieci w wieku 12 miesięcy. Znaleźli w nich 409 różnych genów lekooporności, zapewniających bakteriom oporność na 34 rodzaje antybiotyków. Ponadto 167 z tych genów dawało oporność na wiele typów antybiotyków, w tym też i takich, które WHO uznaje za „krytycznie ważne”, gdyż powinny być w stanie leczyć poważne choroby w przyszłości.
      To dzwonek alarmowy. Już 12-miesięczne dzieci mają w organizmach bakterie, które są oporne na bardzo istotne klasy antybiotyków. Ludzie spożywają coraz więcej antybiotyków, przez co nowe antybiotykooporne bakterie coraz bardziej się rozpowszechniają. Kiedyś może się okazać, że nie będziemy w stanie leczyć zapalenia płuc czy zatruć pokarmowych, ostrzega główny autor badań profesor Søren Sørensen z Wydziału Biologii Uniwersytetu w Kopenhadze.
      Bardzo ważnym czynnikiem decydującym o liczbie lekoopornych genów w jelitach dzieci jest spożywanie przez matkę antybiotyków w czasie ciąży oraz to, czy samo dziecko otrzymywało antybiotyki w miesiącach poprzedzających pobranie próbki.
      Odkryliśmy bardzo silną korelację pomiędzy przyjmowaniem antybiotyków przez matkę w czasie ciąży oraz przejmowanie antybiotyków przez dziecko, a obecnością antybiotykoopornych genów w kale. Wydaje się jednak, że w grę wchodzą też tutaj inne czynniki, mówi Xuan Ji Li.
      Zauważono też związek pomiędzy dobrze rozwiniętym mikrobiomem, a liczbą antybiotykoopornych genów. U dzieci posiadających dobrze rozwinięty mikrobiom liczba takich genów była mniejsza. Z innych badań zaś wiemy, że mikrobiom jest powiązany z ryzykiem wystąpienia astmy w późniejszym życiu.
      Bardzo ważnym odkryciem było spostrzeżenie, że Escherichia coli, powszechnie obecna w jelitach, wydaje się tym patogenem, który w największym stopniu zbiera – i być może udostępnia innym bakteriom – geny lekooporności. To daje nam lepsze rozumienie antybiotykooporności, gdyż wskazuje, które bakterie działają jako gromadzące i potencjalnie rozpowszechniające geny lekooporności. Wiedzieliśmy, że bakterie potrafią dzielić się opornością na antybiotyki, a teraz wiemy, że warto szczególną uwagę przywiązać do E. coli, dodaje Ji Li.
      Wyniki badań opublikowano na łamach pisma Cell Host & Microbe.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Od czasu, gdy odkryto, że w ciągu ostatnich 300 milionów lat chromosom Y stracił setki genów, popularna jest teoria, iż w przyszłości chromosom ten całkowicie utraci swoje geny, co doprowadzi do zniknięcia mężczyzn. Naukowcy z Whitehead Institute zadali ostateczny cios tej teorii.
      Od 10 lat jednym z głównych tematów dotyczących chromosomu Y było jego spodziewane zaniknięcie. Niezależnie od tego, na ile teoria ma naukowe podstawy, stała się ona bardzo popularna. Nie można wygłosić odczytu na temat chromosomu Y, by ktoś nie zapytał o jego wyginięcie - mówi dyrektor Whitehead Institute David Page.
      Wraz ze swoim zespołem postanowił on w końcu zweryfikować twierdzenia o spodziewanej zagładzie płci męskiej.
      Zanim chromosomy X i Y stały się chromosomami płciowymi, były zwykłymi identycznymi autosomami podobnymi do reszty z 22 par, które posiada człowiek. Autosomy, broniąc się przed mutacjami i dążąc do utrzymania różnorodności genetycznej, wymieniają między sobą geny. Około 300 milionów lat temu jeden z segmentów X przestał wymieniać geny z Y, co doprowadziło do szybkiej degeneracji Y. Później cztery kolejne segmenty X zaprzestały dostarczania genów do Y. Wskutek tego obecnie Y posiada zaledwie 19 z ponad 600 genów, które wcześniej dzielił ze swoim partnerem.
      Laboratorium Page’a zsekwencjonowało chromosom Y rezusa i porównało go z chromosomem Y człowieka i szympansa. Wykazali w ten sposób, że od czasu, gdy linie ewolucyjne rezusów i ludzi oddzieliły się od siebie przed 25 milionami lat chromosom obu gatunków jest niezwykle stabilny. Chromosom rezusa nie utracił w tym czasie żadnego genu przodka, a z ludzkiego chromosomu zniknął 1 gen.
      Na początku Y tracił geny w niewiarygodnie szybkim tempie. Jednak sytuacja się ustabilizowała i od tamtej pory chromosom ma się dobrze - mówi Page. Nasze badania rozbijają teorię o znikającym chromosomie Y. Jestem gotów na konfrontację z każdym, kto temu zaprzecza - dodał uczony.
    • przez KopalniaWiedzy.pl
      Kwasy omega-3, które występują m.in. w olejach rybich, chronią nerwy przed uszkodzeniem i przyspieszają ich regenerację. To doskonała wiadomość dla pacjentów, którzy wskutek choroby czy urazu zmagają z bólem, paraliżem czy osłabieniem siły mięśniowej.
      Naukowcy z Queen Mary, University of London, których artykuł ukazał się w Journal of Neuroscience, skoncentrowali się na komórkach nerwów obwodowych. Mogą się one regenerować, ale mimo postępów w zakresie chirurgii, dobre rezultaty osiąga się raczej przy lekkich urazach.
      Na początku Brytyjczycy przyglądali się izolowanym mysim neuronom. Rozciągając je lub pozbawiając dopływu tlenu, symulowali uszkodzenia powstające podczas wypadku lub urazu. Oba zabiegi zabiły wiele komórek, ale podanie kwasów omega-3 zadziałało jak zabezpieczenie, znacznie ograniczając śmierć komórkową. W następnym etapie akademicy badali nerw kulszowy gryzoni. Stwierdzili, że dzięki kwasom omega-3 regenerował się szybciej i w większym zakresie. Dodatkowo zmniejszało się prawdopodobieństwo zaniku mięśni w następstwie uszkodzenia nerwu.
    • przez KopalniaWiedzy.pl
      System kontroli lotu ważek to interesująca kwestia, ale nie dało się jej badać przy użyciu dotychczasowego sprzętu telemetrycznego. Był na tyle ciężki, że owady nie zachowywały się w nim naturalnie. Zmieniło się to dzięki bezprzewodowemu chipowi, zasilanemu nie przez baterie, ale bezprzewodowo.
      Urządzenie jest wspólnym dziełem Matta Reynoldsa z Duke University i Reida Harrisona z Intan Technologies. Powstało dla naukowców z Howard Hughes Medical Institute (HHMI), którzy zbierają informacje, przymocowując elektrody do pojedynczych neuronów łańcuszka nerwowego. Istotnym elementem ich pracy jest zapisywanie aktywności elektrycznej komórek nerwowych i mięśni.
      Wcześniejsze systemy nagrywania aktywności neuronalnej wymagały dużych baterii. Ważki nie mogły ich unieść, dlatego badano unieruchomione owady, które obserwowały obraz z projektora. Akademicy wiążą z nowym urządzeniem spore nadzieje, bo jeśli wszystko pójdzie po ich myśli, za jego pomocą będzie można badać nie tylko ważki, ale i inne małe zwierzęta. Wyeliminowanie baterii to szansa na "odchudzenie" aparatury i jej zminiaturyzowanie.
      Testy systemu prowadzono na specjalnej arenie. To tutaj umieszczano zasilający chip nadajnik. Ustalono, że chip przesyła dane w czasie rzeczywistym z prędkością do 5 megabitów na sekundę. Biolodzy zamierzają zestawiać dane pozyskiwane z neuronów z nagraniami szybkoklatkowymi ważek polujących na muszki owocowe. Szacują, że rozpoczną eksperymenty w ciągu najbliższych miesięcy. Chip z 2 antenkami ma być mocowany do spodniej części odwłoka, nie będzie więc przeszkadzać w poruszaniu skrzydłami.
      Średnia waga badanych ważek wynosi ok. 400 miligramów. Anthony Leonardo z HHMI ocenia, że bez szkody dla lotu i polowania owad jest w stanie unieść mniej więcej jedną trzecią swojej wagi, tymczasem dzisiejsze wielokanałowe systemy telemetryczne ważą 75-150 razy więcej niż ważka (bez baterii). Wcześniej Harrison i Leonardo opracowali co prawda zasilany baterią system specjalnie dla owadów, ale ponieważ ważył 130 miligramów, ważki musiały się wysilić, żeby go unieść. Na takim tle chip o wadze zaledwie 38 miligramów wydaje się lekki jak piórko. Co ważne, ma on 15 razy większą szerokość pasma niż urządzenie poprzedniej generacji.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...