Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Kwarc decyduje o kształcie powierzchni Ziemi

Rekomendowane odpowiedzi

Od kilkudziesięciu lat, czyli od czasu gdy John Tuzo Wilson, wysunął teorię płyt tektonicznych, wiemy, że powierzchnia naszej planety składa się z płyt będących w ciągłym ruchu. Najnowsze badania geofizyków Tony'ego Lowry'ego z Utah State University oraz Marty Perez-Gussinye z University of London rzuciły niespodziewane światło na teorię płyt tektonicznych. Zdaniem obojga naukowców wszystko zaczyna się od kwarcu. To właśnie on ma odgrywać kluczową rolę w procesach, dzięki którym powierzchnia naszej planety pęka, fałduje się, rozciąga tworząc góry, doliny czy równiny.

Jeśli ktoś podróżował na zachód od Wielkich Równin do Gór Skalistych, mógł się zastanowić, dlaczego równiny nagle w pewnym punkcie stają się stromymi szczytami - powiedział Lowry. Okazuje się, że w skorupie ziemskiej pod równinami niemal nie ma kwarcu, natomiast Góry Skaliste są bardzo bogate w ten minerał - dodaje.

Trzęsienia ziemi, wypiętrzanie gór i inne przejawy tektoniki są zależne od tego, jak skały reagują na napięcia. Wiemy, że zjawiska tektoniczne są odpowiedzią na siły grawitacji, ale mniej wiemy o tym, jak wpływają na nie właściwości skał i jak zmieniają się one w zależności od położenia - stwierdził Lowry.

Geofizyk dodaje, że w ciągu ostatnich kilkudziesięciu lat dowiedzieliśmy się, że wysokie temperatury, obecność wody i kwarcu ułatwiają przesuwanie się skał. Dotychczas jednak naukowcy nie posiadali odpowiednich narzędzi pozwalających na przeprowadzenie precyzyjnych pomiarów.

Dopiero w roku 2002 uruchomiono Earthscope Transportable Array, czyli rozmieszczoną na zachodzie USA sieć stacji sejsmicznych, której zadaniem jest zdalne badanie właściwości skał w skorupie ziemskiej. Połączenie danych z Earthscope z informacjami uzyskanymi za pomocą innych narzędzi, pozwoliło na zbadanie wpływu każdego z wymienionych czynników - temperatury, wody i kwarcu - z osobna.

Prędkość rozchodzenia się fal sejsmicznych w skorupie ziemskiej zmienia się w zależności od temperatury i składu skał. Teraz dzięki Earthscope możliwe jest porównanie wartości osobno dla temperatury i składu, co pokazało, że temperatura ma znacznie mniejsze znaczenie niż skład. W składzie zaś szczególną rolę odgrywa kwarc. Gdy wpływ temperatury i wody jest taki sam, deformowanie skorupy rozpoczyna się tam, gdzie jest więcej kwarcu. Gdy ruch skał się rozpocznie, rośnie temperatura skał, co osłabia skały. Większa temperatura powoduje też uwolnienie się wody ze skał, a woda dodatkowo osłabia skorupę i ułatwia deformację skał w konkretnych obszarach, czyli regionach występowania kwarcu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wzrost użycia kwarcu do produkcji narzędzi świadczy o zaawansowaniu społeczeństw sprzed wielu tysięcy lat, twierdzą autorzy najnowszych badań. Archeolodzy uważają, że kwarc, mimo że jest trudny w obróbce, a prehistoryczne społeczności miały do dyspozycji materiały, z których łatwiej byłoby wytwarzać narzędzia, został wybrany ze względu na swoją symbolikę.
      Archeolodzy zauważyli, że przed 14 000 lat w południowej Afryce doszło do znacznego wzrostu liczby niewielkich narzędzi wykonanych z kwarcu. Były one mniejsze niż 1 cm. Lokalnie dostępny był też rogowiec, który jest bardziej wytrzymały, ale mimo używano kryształów kwarcu. Naukowcy przypuszczają, że ludzie wybierali ten materiał ze względu na jego własności, takie jak emisja światła pod wpływem uderzenia oraz pojawianie się ostrych krawędzi po odłupaniu fragmentu. Lokalne społeczności mogły postrzegać kwarc jako istotę żywą, nie można wykluczyć, że chciały przejąć jego moc i dzięki niej zajrzeć w przyszłość.
      Wykonanie niewielkich narzędzi z kwarcu wymagało specjalnych umiejętności. To kruchy materiał, który łatwo się rozpada, ale umiejętnie obrabiany zapewnia bardzo ostre brzegi.
      Archeolodzy zbadali dwa stanowiska w Lesoto – Sehonghong i Ntloana Tsoana. Dzieli je odległość około 100 kilometrów i znajdują sie w bardzo różnych środowiskach. Ludzie, żyjący w obu wspomnianych miejscach używali różnych materiałów do wytwarzania narzędzi, ale w obu przed około 14 000 lat zaczynają pojawiać się duże ilości kwarcu. W niektórych warstwach aż 75% znalezionych narzędzi wykonano właśnie z kwarcu. To wskazuje, że różne grupy łowców-zbieraczy miały ze sobą kontakt i wpływały na siebie.
      Wykazaliśmy, że chociaż kwarc nigdy nie był głównym materiałem ani w Sehonghong ani w Ntloana Tsoana, to ponad 14 000 lat temu zwiększyło się jego użycie, mówi główny autor badań, Justin Pargeter z Emory University. Współautor artykułu, doktor Jamie Hampson z University of Exeter, dodaje: Kwarc występuje tutaj powszechnie, jednak z funkcjonalnego punktu widzenia, nie jest on najlepszym materiałem do wykonywania narzędzi. Użycie go wymaga więcej energii i czasu. Jeśli potrafimy dobrze go obrobić, uzyskamy wyjątkowo ostre narzędzia. Jednak w większości przypadków po prostu się rozpada. Odkryliśmy, że kamienne narzędzia są coraz mniejsze i mniejsze, a w szczycie ich popularności coraz więcej z nich było wykonanych z kwarcu, a nie z rogowca, który jest łatwiej dostępny. Nie jesteśmy pewni, dlaczego mimo to używano kwarcu, ale mogło chodzić o jego unikatowe znaczenie symboliczne. To zaś oznacza, że tutejsze społeczności były znacznie bardziej zaawansowane i inteligentne, niż się uważa.
      Dane etnograficzne oraz rysunki naskalne sugerują, że w tym czasie lokalne społeczności wprowadzały się w halucynacje. Być może światło emitowane przez uderzany kwarc stało się częścią rytuałów pomagających w wejściu do świata duchowego.
      Doktor Hampson, który od 20 lat bada rysunki naskalne, mówi, że widać na nich takie rytuały. Ponadto w wielu miejscach ludzie wkładają kwarc w pęknięcia w skałach, które przez lokalne społeczności są uważane za drzwi pomiędzy światem materialnym a duchowym.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zeszłotygodniowe trzęsienie ziemi o sile 7,8 stopnia w skali Richtera o 30 cm przybliżyło południowy zachód Nowej Zelandii do Australii. Ponieważ wschodnia część Wyspy Południowej przemieściła się na zachód tylko o 1 cm, można de facto powiedzieć, że Nowa Zelandia się powiększyła.
      Ken Gledhill z GNS Science podkreśla, że zjawisko to potwierdza tylko ogrom sił działających podczas trzęsienia. O dziwo, największe trzęsienie ziemi w Nowej Zelandii od 78 lat spowodowało tylko niewielkie szkody w budynkach. Uderzyło w ubiegły czwartek, a epicentrum znajdowało się w regionie Fiordland Wyspy Południowej. Powstała niewielka fala tsunami. Wstrząsy dało się wyczuć na dużym obszarze, ale tylko w kilku rejonach były one naprawdę silne. Inspekcja prowadzona z powietrza ujawniła jedynie kilka osunięć gruntu do fiordów. Niewielkie zniszczenia to po części skutek kierunku rozchodzenia się energii generowanej przez subdukcję płyt pacyficznej i australijskiej. Większość skierowała się na zachód w stronę morza, a nie na ląd i pobliskie miasta. Poza tym trzęsienie ziemi tego rodzaju oznacza mniejszą częstotliwość drgań i jest odczuwane jako ruchy toczące, a nie gwałtowne szarpnięcia.
      Gledhill uważa, że niedawne wydarzenie może zwiększać prawdopodobieństwo jeszcze silniejszego trzęsienia ziemi w rejonie przybrzeżnej części uskoku alpejskiego.
    • przez KopalniaWiedzy.pl
      Profesor Norm Sleep z Uniwersytetu Stanforda uważa, że za pękanie kontynentów odpowiadają skały utworzone z pancerzy fotosyntetyzującego planktonu sprzed miliardów lat.
      Organizmy te pojawiły się już 3,8 mld lat temu. Gdy obumierały, ich szczątki opadały na dno. W ten sposób z biegiem czasu powstały wielokilometrowe warstwy łupków. Przyłączały się one do krawędzi płyt kontynentalnych, przemieszczając się z wolna do ich wnętrza. Obecnie można je znaleźć we wszystkich ważniejszych pasmach górskich świata, m.in. w Alpach czy Himalajach.
      Amerykanin dowodzi, że skały biologicznego pochodzenia tworzą wielkie, a zarazem bardzo słabe obszary skorupy ziemskiej. Gdy płyty tektoniczne się zderzają czy rozciągają, jako pierwsze pęknięcia pojawią się właśnie tutaj.
      Czarne łupki gromadzą materiał radioaktywny i przez to niektóre obszary w większym stopniu się rozgrzewają. Wielokrotne zmiany temperatury i przepływ ciepła osłabiają ich strukturę, dlatego łatwiej ulegają uszkodzeniu.
      Czynniki pochodzenia biologicznego wpływają też na wulkany. Wapień, czyli jedna z osadowych skał organogenicznych, dotarł w ciągu milionów lat do płaszcza Ziemi. Tam ulega podgrzaniu i częściowemu stopieniu. Miesza się z innymi składnikami magmy i jako lawa wydostaje się na powierzchnię.
      Niektórzy eksperci sceptycznie podchodzą do rewelacji Sleepa. Profesor Kevin Hefferan z University of Wisconsin-Stevens Point uważa np., że słabym punktem teorii jego kolegi jest radioaktywność czarnych łupków. Skoro zjawisko sekwestracji jest charakterystyczne także dla granitu, czemu tylko łupki uznano za podatne na pękanie? Powodem jest zapewne różnica w twardości tych skał...
    • przez KopalniaWiedzy.pl
      Dzięki tlenowi życie na Ziemi stało się możliwe, ale dotąd nie było jasne, jak dokładnie przebiegał proces oksygenacji (natlenowania) atmosfery. Profesor Ian Campell i dr Charlotte Allen z Narodowego Uniwersytetu Australijskiego sądzą, że odbyło się to w 6 lub siedmiu etapach, które zazębiały się z powstawaniem superkontynentów i erozją wypiętrzających się podczas zderzeń gór (Nature Geoscience). Po każdym takim zderzeniu następował skokowy wzrost stężenia O2. Najważniejszą rolę odgrywały zatem płyty tektoniczne.
      Proces pompowania tlenu do atmosfery rozpoczął się 2,65 mld lat temu, a zakończył ok. 40 mln lat temu. Wg Australijczyków, kolizje płyt, które doprowadziły do uformowania się m.in. Nuny, Rodinii, Gondwany czy Pangei, skutkowały także wypiętrzaniem supergór. Wskutek ich błyskawicznego wietrzenia do oceanów dostawały się olbrzymie ilości składników odżywczych. To z kolei prowadziło do namnażania wytwarzających tlen glonów oraz cyjanobakterii (sinic). Doktor Allen zaznacza, że inni naukowcy wykazali już wcześniej, że erozja Himalajów zwiększa poziom O2 w atmosferze. Przeskalujmy Himalaje do rozmiarów superkontynentów, a otrzymamy współczesny odpowiednik tego, co jak sądzimy, zdarzyło się 7-krotnie w historii Ziemi.
      Aby ustalić, czy naprawdę istniał związek między dwoma opisanymi zjawiskami, Campell i Allen datowali cyrkony, znalezione w osadach delt 40 rzek. Krystalizowały one, gdy skorupa ziemska roztapiała się podczas zderzenia, a potem zaczynała stygnąć. Podczas zestalania minerał absorbował uran, który z czasem rozkładał się do wtórnego ołowiu radiogenicznego. Określając stosunek uranu do ołowiu, można więc oszacować, kiedy powstały kryształy.
      Dick Holland, geochemik z Uniwersytetu Harvarda, nie zgadza się jednak z teorią zaproponowaną przez Australijczyków. Podkreśla, że tzw. wielkiego natlenowania sprzed ok. 2,3 mld lat nie poprzedzało żadne zderzenie płyt tektonicznych.
      Campell i Allen nie zamierzali badać związków między kolizjami a oksygenacją atmosfery. Pierwotnie chcieli się przyjrzeć wzorcom powstawania kontynentów.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...