Sign in to follow this
Followers
0

Spintronika w temperaturze pokojowej
By
KopalniaWiedzy.pl, in Technologia
-
Similar Content
-
By KopalniaWiedzy.pl
Po raz pierwszy udało się zrekonstruować w laboratorium falową naturę elektronu, jego funkcję falową Blocha. Dokonali tego naukowcy z Uniwersytetu Kalifornijskiego w Santa Barbara (UCSB), a ich praca może znaleźć zastosowanie w projektowaniu kolejnych generacji urządzeń elektronicznych i optoelektronicznych.
Elektrony zachowują się jednocześnie jak cząstki oraz jak fala. Ich falowa natura opisywane jest przez naukowców za pomocą obiektów matematycznych zwanych funkcjami falowymi. Funkcje te zawierają zarówno składowe rzeczywiste, jak i urojone. Z tego też powodu funkcji falowej Blocha elektronu nie można bezpośrednio zmierzyć. Można jednak obserwować powiązane z nią właściwości. Fizycy od dawna próbują zrozumieć, w jaki sposób falowa natura elektronów poruszających się przez sieć krystaliczną atomów, nadaje tej sieci właściwości elektroniczne i optyczne. Zrozumienie tego zjawiska pozwoli nam projektowanie urządzeń lepiej wykorzystujących falową naturę elektronu.
Naukowcy z Santa Barbara wykorzystali silny laser na swobodnych elektronach, który posłuży im do uzyskanie oscylującego pola elektrycznego w półprzewodniku, arsenu galu. Jednocześnie za pomocą lasera podczerwonego o niskiej częstotliwości wzbudzali jego elektrony. Wzbudzone elektrony pozostawiały po sobie „dziury” o ładunku dodatnim. Jak wyjaśnia Mark Sherwin, w arsenku galu dziury te występują w dwóch odmianach – lekkiej i ciężkiej – i zachowują się jak cząstki o różnych masach.
Para elektron-dziura tworzy kwazicząstkę zwaną ekscytonem. Fizycy z UCSB odkryli, że jeśli utworzy się elektrony i dziury w odpowiednim momencie oscylacji pola elektrycznego, to oba elementy składowe ekscytonów najpierw oddalają się od siebie, następnie zwalniają, zatrzymują się, zaczynają przyspieszać w swoim kierunku, dochodzi do ich zderzenia i rekombinacji. W czasie rekombinacji emitują impuls światła – zwany wstęgą boczną – o charakterystycznej energii. Emisja ta zawiera informacje o funkcji falowej elektronów, w tym o ich fazach.
Jako, że światło i ciężkie dziury przyspieszają w różnym tempie w polu elektrycznym ich funkcje falowe Blocha mają różne fazy przed rekombinacją z elektronami. Dzięki tej różnicy fazy dochodzi do interferencji ich funkcji falowych i emisji, którą można mierzyć. Interferencja ta determinuje też polaryzację wstęgi bocznej. Może ona być kołowa lub eliptyczna.
Autorzy eksperymentu zapewniają, że sam prosty stosunek pomiędzy interferencją a polaryzacją, który można zmierzyć, jest wystarczającym warunkiem łączącym teorię mechaniki kwantowej ze zjawiskami zachodzącymi w rzeczywistości. Ten jeden parametr w pełni opisuje funkcję falową Blocha dziury uzyskanej w arsenku galu. Uzyskujemy tę wartość mierząc polaryzację wstęgi bocznej, a następnie rekonstruując funkcję falową, która może się różnić w zależności od kąta propagacji dziury w krysztale, dodaje Seamus O'Hara.
Do czego takie badania mogą się przydać? Dotychczas naukowcy musieli polegać na teoriach zawierających wiele słabo poznanych elementów. Skoro teraz możemy dokładnie zrekonstruować funkcję falową Blocha dla różnych materiałów, możemy to wykorzystać przy projektowaniu i budowie laserów, czujników i niektórych elementów komputerów kwantowych, wyjaśniają naukowcy.
« powrót do artykułu -
By KopalniaWiedzy.pl
Rozwiązaniem problemu pomiędzy szybkością działania komputerów kwantowych a koherencją kubitów może być zastosowanie dziur, twierdzą australijscy naukowcy. To zaś może prowadzić do powstania kubitów nadających się do zastosowania w minikomputerach kwantowych.
Jedną z metod stworzenia kubitu – kwantowego bitu – jest wykorzystanie spinu elektronu. Aby uczynić komputer kwantowy tak szybkim, jak to tylko możliwe, chcielibyśmy mieć możliwość manipulowania spinami wyłącznie za pomocą pola elektrycznego, dostarczanego za pomocą standardowych elektrod.
Zwykle spiny nie reagują na pole elektryczne, jednak z niektórych materiałach spiny wchodzi w niebezpośrednie interakcje z polem elektrycznym. Mamy tutaj do czynienia z tzw. sprzężeniem spinowo-orbitalnym. Eksperci zajmujący się tym tematem obawiają się jednak, że gdy taka interakcja jest zbyt silna, wszelkie korzyści z tego zjawiska zostaną utracone, gdyż dojdzie do dekoherencji i utraty kwantowej informacji.
Jeśli elektrony zaczynają wchodzić w interakcje z polami kwantowymi, które im aplikujemy w laboratorium, są też wystawione na niepożądane zmienne pola elektryczne, które istnieją w każdym materiale. Potocznie nazywamy to „szumem”. Ten szum może zniszczyć delikatną informację kwantową, mówi główny autor badań, profesor Dimi Culcer z Uniwersytetu Nowej Południowej Walii.
Nasze badania pokazują jednak, że takie obawy są nieuzasadnione. Nasze teoretyczne badania wykazały, że problem można rozwiązać wykorzystując dziury – które można opisać jako brak elektronu – zachowujące się jak elektrony z ładunkiem dodatnim, wyjaśnia uczony.
Dzięki wykorzystaniu dziur kwantowy bit może być odporny na fluktuacje pochodzące z tła. Co więcej, okazało się, że punkt, w którym kubit jest najmniej wrażliwy na taki szum, jest jednocześnie punktem, w którym działa on najszybciej. Z naszych badań wynika, że w każdym kwantowym bicie utworzonym z dziur istnieje taki punkt. Stanowi to podstawę do przeprowadzenia odpowiednich eksperymentów laboratoryjnych, dodaje profesor Culcer.
Jeśli w laboratorium uda się osiągnąć te punkty, będzie można rozpocząć eksperymenty z utrzymywaniem kubitów najdłużej jak to możliwe. Będzie to też stanowiło punkt wyjścia do skalowania kubitów tak, by można było je stosować w minikomputerach.
Wiele wskazuje na to, że takie eksperymenty mogą zakończyć się powodzeniem. Profesor Joe Salfi z University of British Columbia przypomina bowiem: Nasze niedawne eksperymenty z kubitami utworzonymi z dziur wykazały, że w ich wypadku czas koherencji jest dłuższy, niż się spodziewaliśmy. Teraz widzimy, że nasze obserwacje mają solidne podstawy teoretyczne. To bardzo dobry prognostyk na przyszłość.
Praca Australijczyków została opublikowana na łamach npj Quantum Information.
« powrót do artykułu -
By KopalniaWiedzy.pl
Znajdujący się na Biegunie Południowym wielki detektor neutrin IceCube zarejestrował wysokoenergetyczne wydarzenie, które potwierdziło istnienie zjawiska przewidzianego przed 60 laty i wzmocniło Model Standardowy. Wydarzenie to zostało wywołane przez cząstkę antymaterii o energii 1000-krotnie większej niż cząstki wytwarzane w Wielkim Zderzaczu Hadronów (LHC).
Ponad 4 lata temu, 8 grudnia 2016 roku wysokoenergetyczne antyneutrino elektronowe wpadło z olbrzymią prędkością w pokrywę lodową Antarktydy. Jego energia wynosiła gigantyczne 6,3 petaelektronowoltów (PeV). Głęboko w lodzie zderzyło się ono z elektronem, doprowadzając do pojawienia się cząstki, która szybko rozpadła się na cały deszcz cząstek. Ten zaś został zarejestrowany przez czujniki IceCube Neutrino Observatory.
IcCube wykrył rezonans Glashowa, zjawisko, które w 1960 roku przewidział późniejszy laureat Nagrody Nobla, Sheldon Glashow. Pracujący wówczas w Instytucie Nielsa Bohra w Kopenhadze naukowiec opublikował pracę, w której stwierdził, że antyneutrino o odpowiedniej energii może wejść w interakcje z elektronem, w wyniku czego dojdzie do pojawienia się nieznanej jeszcze wówczas cząstki. Cząstką tą był odkryty w 1983 roku bozon W.
Po odkryciu okazało się, że ma on znacznie większą masę, niż przewidywał Glashow. Wyliczono też, że do zaistnienia rezonansu Glashowa konieczne jest antyneutrino o energii 6,3 PeV. To niemal 1000-krotnie większa energia niż nadawana cząstkom w Wielkim Zderzaczu Hadronów. Żaden obecnie działający ani obecnie planowany akcelerator nie byłby zdolny do wytworzenia tak wysokoenergetycznej cząstki.
IceCube pracuje od 2011 roku. Dotychczas obserwatorium wykryło wiele wysokoenergetycznych zdarzeń, pozwoliło na przeprowadzenie niepowtarzalnych badań. Jednak zaobserwowanie rezonansu Glashowa to coś zupełnie wyjątkowego. Musimy bowiem wiedzieć, że to dopiero trzecie wykryte przez IceCube wydarzenie o energii większej niż 5 PeV.
Odkrycie jest bardzo istotne dla specjalistów zajmujących się badaniem neutrin. Wcześniejsze pomiary nie dawały wystarczająco dokładnych wyników, by można było odróżnić neutrino od antyneutrina. To pierwszy bezpośredni pomiar antyneutrina w przepływających neutrinach pochodzenia astronomicznego, mówi profesor Lu Lu, jeden z autorów analizy i artykułu, który ukazał się na łamach Nature.
Obecnie nie jesteśmy w stanie określić wielu właściwości astrofizycznych źródeł neutrin. Nie możemy np. zmierzyć rozmiarów akceleratora czy mocy pól magnetycznych w rejonie akceleratora. Jeśli jednak będziemy w stanie określić stosunek neutrin do antyneutrin w całym strumieniu, bo będziemy mogli badać te właściwości, dodaje analityk Tianlu Yaun z Wisconsin IceCube Particle Astrophysics Center.
Sheldon Glashow, który obecnie jest emerytowanym profesorem fizyki na Boston University mówi, że aby być absolutnie pewnymi wyników, musimy zarejestrować kolejne takie wydarzenie o identycznej energii. Na razie mamy jedno, w przyszłości będzie ich więcej.
Niedawno ogłoszono, że przez najbliższych kilka lat IceCube będzie udoskonalany, a jego kolejna wersja – IceCube-Gen2 – będzie w stanie dokonać większej liczby tego typu pomiarów.
« powrót do artykułu -
By KopalniaWiedzy.pl
Rozwój spintroniki zależy od materiałów gwarantujących kontrolę nad przepływem prądów spolaryzowanych magnetycznie. Trudno jednak mówić o kontroli, gdy nieznane są szczegóły transportu ciepła przez złącza między materiałami. Cieplna luka w naszej wiedzy została właśnie wypełniona dzięki polsko-niemieckiemu zespołowi fizyków, który po raz pierwszy dokładnie opisał zjawiska dynamiczne zachodzące na złączu między ferromagnetykiem a półprzewodnikiem.
Spintronika to następczyni wszechobecnej elektroniki. W urządzeniach spintronicznych prądy elektryczne próbuje się zastępować prądami spinowymi. Obiecującym materiałem dla tego typu zastosowań wydaje się być złącze arsenku galu z krzemianem żelaza: na każde cztery elektrony przepływające przez złącze aż trzy niosą tu informację o kierunku momentu magnetycznego. Do tej pory niewiele było jednak wiadomo, jak zmieniają się właściwości dynamiczne złącza, decydujące o przepływie ciepła. Połączenie sił Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie, Instytutu Technologicznego w Karlsruhe (KIT), Instytutu Paula Drudego w Berlinie i ośrodka badawczego DESY w Hamburgu pozwoliło tę zagadkę wreszcie rozwiązać.
Układy z krzemianu żelaza Fe3Si i arsenku galu GaAs są szczególne. Oba materiały znacznie różnią się właściwościami: pierwszy jest bardzo dobrym ferromagnetykiem, drugi to półprzewodnik. Natomiast stałe sieci, czyli charakterystyczne odległości między atomami, w obu materiałach różnią się zaledwie o 0,2%, są więc niemal identyczne. W rezultacie materiały te świetnie się łączą, a na złączach nie ma defektów ani znaczących naprężeń - mówi dr hab. Przemysław Piekarz (IFJ PAN).
Grupa skoncentrowała się na przygotowaniu teoretycznego modelu drgań sieci krystalicznych w badanym złączu. Istotną rolę odegrało tu oprogramowanie PHONON, stworzone i od ponad 20 lat rozwijane przez prof. dr hab. Krzysztofa Parlińskiego (IFJ PAN). W oparciu o podstawowe prawa mechaniki kwantowej wyliczane są tu siły oddziaływań między atomami, co pozwala rozwiązywać równania opisujące ruch atomów w sieciach krystalicznych.
Dr hab. Małgorzata Sternik (IFJ PAN), która wykonała większość obliczeń, wyjaśnia: W naszym modelu podłożem jest arsenek galu, którego najbardziej zewnętrzna warstwa składa się z atomów arsenu. Nad nią znajdują się naprzemiennie ułożone warstwy z atomami żelaza i krzemu oraz samego żelaza. Drgania atomowe wyglądają inaczej dla litego kryształu, a inaczej w pobliżu interfejsu. Dlatego badaliśmy, jak zmienia się widmo drgań w zależności od odległości od interfejsu.
Dynamika atomów w kryształach nie jest przypadkowa. Materiały te charakteryzują się dużym uporządkowaniem. W efekcie ruch atomów nie jest tu chaotyczny, lecz podlega pewnym, niekiedy bardzo złożonym wzorcom. Za transport ciepła odpowiadają głównie fale akustyczne poprzeczne. Oznacza to, że przy analizie dynamiki sieci badacze musieli ze szczególną uwagą przyglądać się drganiom atomowym zachodzącym w płaszczyźnie równoległej do złącza. Gdyby fale drgań atomów w obu materiałach były do siebie dopasowane, ciepło efektywnie przepływałoby przez złącze.
Próbki materiałów Ge/Fe3Si/GaAs, zawierające różną liczbę monowarstw krzemianu żelaza (3, 6, 8 oraz 36), zostały przygotowane w Instytucie Paula Drudego przez Jochena Kalta, doktoranta w Instytucie Technologicznym w Karlsruhe. Same doświadczenia zrealizowano w synchrotronie Petra III, na linii pomiarowej Dynamics Beamline P01 w ośrodku DESY.
Pomiar widma drgań atomowych w ultracienkich warstwach jest wielkim wyzwaniem dla fizyków ciała stałego - mówi kierujący eksperymentem dr Svetoslav Stankov (KIT) i dodaje: Dzięki wyjątkowym własnościom promieniowania synchrotronowego, potrafimy obecnie za pomocą nieelastycznego rozpraszania jądrowego wyznaczać z dużą rozdzielczością widmo drgań atomowych w nanostrukturach. W naszych pomiarach wiązka promieniowania synchrotronowego padała na złącze w kierunku praktycznie równoległym do jego powierzchni. Takie ustawienie gwarantowało możliwość obserwacji drgań atomowych zachodzących równolegle do złącza. Co więcej, jest to pomiar selektywny dla atomów żelaza, bez zaburzenia pochodzącego od tła.
Okazało się, że mimo podobieństw struktury krystalicznej obu materiałów, drgania atomów w pobliżu interfejsu znacznie różnią się od tych w litym materiale. Obliczenia z pierwszych zasad doskonale pokryły się z wynikami eksperymentalnymi, odtwarzając nowe cechy w widmach drgań atomów.
Niemal doskonała zgodność teorii z eksperymentem otwiera drogę do nanoinżynierii fononowej, która może doprowadzić do powstania bardziej wydajnych urządzeń termoelektrycznych i efektywnego zarządzania przepływem ciepła - podsumowuje dr Stankov.
Złącze Fe3Si/GaAs okazało się doskonałym układem do badania własności dynamicznych i spintronicznych. W przyszłości zespół naukowców, finansowany przez Narodowe Centrum Nauki (2017/25/B/ST3/02586), Helmholtz Association (HGF, VH-NG-625) i German Ministry for Research and Education (BMBF, 05K16VK4), zamierza rozszerzyć zakres badań interfejsu w celu dokładnego poznania jego własności elektronowych i magnetycznych.
« powrót do artykułu -
By KopalniaWiedzy.pl
Międzynarodowa grupa naukowa pracująca pod przewodnictwem inżynierów z Narodowego Uniwersytetu Singapuru opracowała nowe urządzenie spintroniczne do manipulowania cyfrową informacją. Jest ono 20-krotnie bardziej wydajne i 10-krotnie bardziej stabilne niż dostępne obecnie rozwiązania komercyjne. Nowe urządzenie zostało opracowane we współpracy z naukowcami z Instytutu Technologicznego Toyoty oraz Uniwersytetu Koreańskiego.
Nasze odkrycie może stać się nową platformą rozwojową dla przemysłu spintronicznego, który obecnie zmaga się z problemami związanymi z niestabilnością i skalowalnością, gdyż wykorzystuje się tutaj bardzo cienkie elementy magnetyczne, mówi profesor Yang Hyunso z Singapuru.
Obecnie na świecie powstają olbrzymie ilości cyfrowych informacji. Istnieje więc duże zapotrzebowanie na tanie, energooszczędne, stabilne i skalowalne produkty do przechowywania tej informacji i manipulowania nią. Stawiane warunki mogłyby spełniać materiały spintroniczne bazujące na rozwiązaniach ferromagnetycznych. Jednak wciąż są one bardzo drogie z powodu problemów ze skalowalnością i stabilnością. Układy pamięci bazujące na ferromagnetykach nie mogą mieć grubości większej niż kilka nanometrów, gdyż efektywność ich okablowania wykładniczo spada wraz z rosnącą grubością. Zaś obecna grubość jest niewystarczająca, by zapewnić stabilne przechowywanie danych w warunkach naturalnie wahających się temperatur, wyjaśnia doktor Yu Jiawei.
Uczeni, aby poradzić sobie z tym problemem, zaprzęgli do pracy materiały ferrimagnetyczne. Zauważyli, że mogą być one 10-krotnie grubsze niż materiały ferromagnetyczne i nie wpływa to na ich wydajność. W ferrimagnetykach spin elektronów napotyka na minimalne opory. To jest taka różnica, jakbyśmy jechali samochodem drogą 8-pasmową, w porównaniu do jazdy 1-pasmową ulicą w mieście. Dla spinu ferromagnetyk to jak wąska ulica w mieście, zaś ferrimagnetyk jest jak szeroka autostrada, mówi jeden z badaczy, Rahul Mishra.
Pamięć stworzona z materiału ferrimagnetycznego okazała się 10-krotnie bardziej stabilna i 20-krotnie bardziej wydajna niż pamięć z ferromagnetyku. Zdaniem profesora Yanga, za różnicę w wydajności odpowiada unikatowe uporządkowanie atomów.W ferrimagnetykach sąsiadujące ze sobą domeny magnetyczne są zwrócone do siebie przeciwnymi znakami. Zaburzenia spinu powodowane przez jeden atom, są kompensowane przez sąsiedni. Dzięki temu informacja może przepływać szybciej, dalej i przy mniejszym zużyciu energii, stwierdził.
Na kolejnym etapie badań naukowcy przyjrzą się już nie tylko problemowi przesyłania informacji w ferrimagnetykach, ale zbadają też tempo jej odczytu i zapisu. Spodziewają się, że będzie ono niezwykle szybkie. Chcą też rozpocząć współpracę z przemysłem, by ich wynalazek jak najszybciej trafił do praktycznego użycia.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.