-
Similar Content
-
By KopalniaWiedzy.pl
W tworzywach sztucznych używana jest olbrzymia liczba środków chemicznych, z których znaczna część nie została dobrze przebadana, a wiele potencjalnie szkodliwych związków jest dopuszczonych do kontaktu z żywnością. Do takich wniosków doszli naukowcy ze Szwajcarskiego Federalnego Instytutu Technologii w Zurichu (ETH Zurich), którzy stworzyli pierwszą dużą bazę danych monomerów, dodatków i związków ułatwiających produkcję wykorzystywanych w plastikach.
Szwajcarzy zidentyfikowali w tworzywach sztucznych około 10 500 związków chemicznych. Wśród nich 2489 używanych jest w opakowaniach, do tekstyliów trafia 2429 środków, kontakt z żywnością ma 2109 związków chemicznych, a 522 różne związki są wykorzystywane do produkcji zabawek. Z kolei w urządzeniach medycznych, w tym maseczkach, znajdziemy 247 związków chemicznych.
Co więcej, spośród wspomnianych 10 500 substancji aż 2480 (24%) to związki o potencjalnie szkodliwym wpływie na zdrowie. To oznacza, że niemal 1/4 wszystkich chemikaliów używanych w plastikach to albo związki wysoce stabilne, albo akumulują się w organizmie, albo są toksyczne. Są to często substancje toksyczne dla zwierząt wodny, powodujące nowotwory lub uszkadzające konkretne narządy, mówi główna autorka badań, Helene Wiesinger. Uczona dodaje, że niemal połowa z tych potencjalnie szkodliwych substancji jest masowo produkowana w Unii Europejskiej lub Stanach Zjednoczonych.
Najbardziej uderzający jest fakt, że wiele z tych potencjalnie niebezpiecznych substancji podlega bardzo słabym regulacjom lub nie są dokładnie opisane, mówi Wiesinger. Z badań wynika, że aż 53% potencjalnie niebezpiecznych substancji w ogóle nie podlega żadnym regulacjom ani w USA, ani w UE, ani w Japonii. Jeszcze bardziej zaskakujący jest fakt, ze 901 potencjalnie niebezpiecznych substancji zostało zatwierdzonych do kontaktu z żywnością. A dla około 10% takich substancji Szwajcarzy nie znaleźli żadnych opracowań naukowych.
Tworzywa sztuczne wytwarzane są z organicznych polimerów zbudowanych z powtarzających się monomerów. W czasie produkcji dodaje się wiele różnych związków chemicznych, jak przeciwutleniacze, plastyfikatory, opóźniacze spalania itp. itd., które nadają plastikom pożądne właściwości. Ponadto używa się katalizatorów, rozpuszczalników i innych związków ułatwiających sam proces produkcyjny oraz obróbkę plastiku.
Badacze, ustawodawcy i sam przemysł skupiają się głównie na niewielkiej liczbie niebezpiecznych chemikaliów, o których wiadomo, że znajdują się w plastikach, mówi Wiesinger. Tymczasem wiemy, że plastikowe opakowania to główne źródło organicznych zanieczyszczeń żywności, a ftalany i bromowane opóźniacze spalania wykrywane są w kurzu i powietrzu w pomieszczeniach. Coraz częściej ukazują się też badania dowodzące, że w tworzywach sztucznych znajduje się znacznie więcej niebezpiecznych substancji niż przypuszczano.
Jednak Szwajcarów najbardziej zaskoczył i zmartwił fakt, że wykorzystuje się tak wiele potencjalnie niebezpiecznych substancji. Kontakt z takimi substancjami może mieć negatywny wpływ na zdrowie konsumentów, pracowników fabryk plastiku oraz na środowisko. Wpływają one też negatywnie na proces recyklingu, jego bezpieczeństwo i jakość przetworzonego plastiku.
Nie można jednak wykluczyć, że potencjalnie niebezpiecznych jest znacznie więcej substancji. Szwajcarzy zauważają, że 4100 (39%) chemikaliów, które zidentyfikowali w plastikach, nie zostało nigdzie zakwalifikowanych pod względem bezpieczeństwa.
Uczeni zbierali dane do swojej pracy przez ponad 2,5 roku. W tym czasie przeanalizowali ponad 190 publicznie dostępnych źródłem informacji z instytucji badawczych, przemysłu oraz źródeł urzędowych. Znaleźliśmy wiele luk w tych danych. Braki dotyczyły szczególnie opisu substancji i ich konkretnych zastosowań. To zaś negatywnie wpływa na możliwość podjęcia przez konsumenta decyzji, co do plastiku, jaki chce używać.
Wyniki badań zostały opisane w artykule Deep Dive into Plastic Monomers, Additives, and Processing Aids.
« powrót do artykułu -
By KopalniaWiedzy.pl
Świat ma coraz większy problem z plastikowymi odpadami. By mu zaradzić chemicy z Cornell University opracowali nowy polimer o właściwościach wymaganych w rybołówstwie, który ulega degradacji pod wpływem promieniowania ultrafioletowego, dowiadujemy się z artykułu opublikowanego na łamach Journal of the American Chemical Society.
Stworzyliśmy plastik o właściwościach mechanicznych wymaganych w komercyjnym rybołówstwie. Jeśli wyposażenie to zostanie zgubione w wodzie, ulegnie degradacji w realistycznej skali czasowej. Taki materiał może zmniejszyć akumulowanie się plastiku w środowisku, mówi główny badacz, Bryce Lipinski, doktorant z laboratorium profesora Geoffa Coatesa. Uczony przypomina, że zgubione wyposażenie kutrów rybackich stanowi aż połowę plastikowych odpadów pływających w oceanach. Sieci i liny rybackie są wykonane z trzech głównych rodzajów polimerów: izotaktycznego polipropylenu, polietylenu o wysokiej gęstości oraz nylonu-6,6. Żaden z nich nie ulega łatwej degradacji.
Profesor Coates od 15 lat pracuje na nowym rodzajem plastiku o nazwie izotaktyczny tlenek polipropylenu (iPPO). Podwaliny pod stworzenie tego materiału położono już w 1949 roku, jednak zanim nie zajął się nim Coates niewiele było wiadomo o jego wytrzymałości i właściwościach dotyczących fotodegradacji.
Lipinski zauważył, że iPPO jest zwykle stabilny, jednak ulega degradacji pod wpływem promieniowania ultrafioletowego. W laboratorium widać skutki tej degradacji, jednak są one niewidoczne gołym okiem. Tempo rozpadu tworzywa zależy od intensywności promieniowania. W warunkach laboratoryjnych łańcuch polimerowy uległ skróceniu o 25% po 30-dniowej ekspozycji na UV. Ostatecznym celem naukowców jest stworzenie plastiku, który będzie rozpadał się całkowicie i nie pozostawi w środowisku żadnych śladów. Lipinski mówi, że w literaturze fachowej można znaleźć informacje o biodegradacji krótkich łańcuchów iPPO. Uczony ma jednak zamiar udowodnić, że całkowitemu rozpadowi będą ulegały tak duże przedmioty jak sieci rybackie.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy z Uniwersytetu Śląskiego opracowali metodę syntezy, która umożliwia produkcję czystego chemicznie polikaprolaktonu (PCL-u). Jest to polimer ulegający naturalnemu rozkładowi w okresie około dwóch lat. Wykazuje on zgodność tkankową, co oznacza, że może być stosowany w przemyśle farmaceutycznym i medycznym. Dodatkowo polimer ten ma dobre właściwości przetwórcze, jest rozpuszczalny w wielu rozpuszczalnikach organicznych oraz może tworzyć mieszalne blendy polimerowe. Powyższe właściwości sprawiają że ma szerokie zastosowania wielkotonażowe, co przekłada się na zainteresowanie wielu ośrodków naukowych i przemysłowych.
PCL może być stosowany jako: nośnik w układach kontrolowanego uwalniania leków, podłoże do hodowli tkanek w inżynierii tkankowej bądź materiał wypełniający. Dzięki temu, że naturalnie rozkłada się w organizmie ludzkim, może być również wykorzystywany do produkcji wchłanialnych nici chirurgicznych czy implantów z pamięcią kształtu, takich jak klamry do łączenia złamań kości czy specjalne pręty stosowane do leczenia schorzeń kręgosłupa.
Zważywszy na interesujące właściwości, polimer ten znajduje także zastosowanie w przemyśle – jako dodatek do opakowań i folii biodegradowalnych, a w połączeniu ze skrobią może być używany do wyrobu tworzywa, z którego otrzymywane są jednorazowe talerzyki czy kubki.
Ze względu na wielkotonażową produkcję PCL-u i jego szerokie zastosowanie w medycynie, ważne jest usprawnianie procesu jego produkcji, najczęściej poprzez modyfikacje sposobu jego otrzymywania. Docelowo proces ten powinien być kontrolowany w taki sposób, aby producenci otrzymywali PCL o określonych, pożądanych właściwościach przy obniżonych wymaganiach technologicznych.
Jest to trudne zadanie przede wszystkim ze względu na potencjalne zastosowanie PCL-u w medycynie, gdzie wyprodukowane z niego narzędzia czy obiekty mają kontakt z tkanką ludzką, co wymusza ponadprzeciętną czystość wymaganą przez producentów. Ponadto produkcja tego polimeru powinna być przyjazna dla środowiska naturalnego.
Interesujące rozwiązanie zaproponowali naukowcy z Uniwersytetu Śląskiego. Zmienili warunki, w których prowadzony jest proces polimeryzacji ε-kaprolaktonu (ε-CL), umożliwiając produkcję polimerów o niespotykanej czystości . Alternatywą okazało się zastosowanie wody jako inicjatora reakcji chemicznej oraz wysokiego ciśnienia jako jej katalizatora. Obecność wody pozwala kontrolować przebieg reakcji, natomiast przeprowadzenie jej w warunkach wysokiego ciśnienia umożliwia otrzymanie produktu o dużej czystości, oznaczającej m.in. brak zawartości jonów metali i zanieczyszczeń organicznych oraz nieorganicznych. Tak otrzymany PCL może być stosowany nie tylko w przemyśle, ale i w medycynie, m.in. do produkcji nici chirurgicznych, jako nośnik leków czy szkielet w inżynierii tkankowej.
Ponadto zaproponowany sposób ciśnieniowej polimeryzacji ε-kaprolaktonu pozwala na uproszczenie składu mieszaniny reakcyjnej, co skutkuje obniżeniem kosztów produkcji. Opisane rozwiązanie zostało objęte ochroną patentową.
Autorami wynalazku są pracownicy Wydziału Nauk Ścisłych i Technicznych: mgr inż. Andrzej Dzienia, dr inż. Paulina Maksym, dr hab. Magdalena Tarnacka, dr hab. Kamil Kamiński, prof. UŚ oraz prof. zw. dr hab. Marian Paluch.
« powrót do artykułu -
By KopalniaWiedzy.pl
Już w poprzedniej dekadzie interesowano się zastosowaniem interferencji RNA (wyciszania lub wyłączania ekspresji genu przez dwuniciowy RNA) w leczeniu nowotworów. Cały czas problemem pozostawało jednak dostarczanie RNA o sekwencji zbliżonej do wyłączanego wadliwego genu. Naukowcy z MIT-u zaproponowali ostatnio rozwiązanie - zbitki mikrogąbek z długich łańcuchów kwasu nukleinowego.
Skąd problem z dostarczaniem? Małe interferujące RNA (siRNA, od ang. small interfering RNA), które niszczą mRNA, są szybko rozkładane przez enzymy zwalczające wirusy RNA.
Paula Hammond i jej zespół wpadli na pomysł, by RNA pakować w tak gęste mikrosfery, że są one w stanie wytrzymać ataki enzymów aż do momentu dotarcia do celu. Nowy system wyłącza geny równie skutecznie jak wcześniejsze metody, ale przy znacznie zmniejszonej dawce cząstek. Podczas eksperymentów Amerykanie wyłączali za pomocą interferencji RNA gen odpowiadający za świecenie komórek nowotworowych u myszy. Udawało im się to za pomocą zaledwie 1/1000 cząstek potrzebnych przy innych metodach.
Jak tłumaczy Hammond, interferencję RNA można wykorzystać przy wszystkich chorobach związanych z nieprawidłowo funkcjonującymi genami, nie tylko w nowotworach.
Wcześniej siRNA wprowadzano do nanocząstek z lipidów i materiałów nieorganicznych, np. złota. Naukowcy odnosili większe i mniejsze sukcesy, ale nadal nie udawało się wypełnić sfer większą liczbą cząsteczek RNA, bo krótkich łańcuchów nie można ciasno "ubić". Ekipa prof. Hammond zdecydowała się więc na wykorzystanie jednej długiej nici, którą łatwo zmieścić w niewielkiej sferze. Długoniciowe cząsteczki RNA składały się z powtarzalnych sekwencji nukleotydów. Dodatkowo segmenty te pooddzielano krótkimi fragmentami, rozpoznawanymi przez enzym Dicer, który ma za zadanie ciąć RNA właśnie w tych miejscach.
Podczas syntezy RNA tworzy arkusze, które potem samorzutnie zwijają się w bardzo zbite gąbkopodobne sfery. W sferze o średnicy 2 mikronów mieści się do 500 tys. kopii tej samej sekwencji RNA. Potem sfery umieszcza się na dodatnio naładowanym polimerze, co prowadzi do dalszego ich ściskania. Średnica wynosi wtedy zaledwie 200 nanometrów, a to niewątpliwie ułatwia dostanie się do komórki. W komórce Dicer tnie długą nić na serię 21-nukleotydowych nici.
-
By KopalniaWiedzy.pl
Wiadomo już, czemu wiele osób w czasie wykonywania rezonansu magnetycznego lub podczas wyciągania ze skanera doświadcza oczopląsu. Silne pole magnetyczne wprawia w ruch endolimfę wypełniającą kanały błędnika (Current Biology).
Wskutek ruchów cieczy w uchu wewnętrznym pacjenci mają wrażenie spadania lub nieoczekiwanych, chwiejnych ruchów. Zespół z Uniwersytetu Johnsa Hopkinsa, który pracował pod kierownictwem Dale’a C. Robertsa, umieścił w aparacie MRI 10 osób ze zdrowym błędnikiem i 2 z błędnikiem niedziałającym w skanerze. Skupiano się nie tylko na autoopisie dot. zawrotów głowy, ale również na nystagmusie, czyli niezależnych od woli poziomych drganiach gałek ocznych (in. nazywanych oczopląsem położeniowym). Ponieważ wskazówki wzrokowe mogą je stłumić, eksperyment przeprowadzano w ciemnościach.
Nagrania z kamery noktowizyjnej pokazały, że nystagmus wystąpił u wszystkich zdrowych badanych, nie pojawił się zaś u pozostałej dwójki. Sugeruje to, że (zdrowy) błędnik odgrywa kluczową rolę w zawrotach głowy w skanerze MRI.
Amerykanie zastanawiali się, jak natężenie pola magnetycznego wytwarzanego przez skaner wpływa na błędnik, dlatego ochotników umieszczano na różne okresy w aparatach o niejednakowych parametrach technicznych. Przyglądano się oczopląsowi położeniowemu podczas wkładania i wyjmowania ze skanera (i to zarówno podczas wkładania i wyjmowania tradycyjną drogą, jak i od tyłu tuby). W ten sposób oceniano wpływ kierunku pola magnetycznego na wrażenia ochotników.
Silniejsze pole magnetyczne wywoływało znacznie szybszy nystagmus. Ruchy gałek ocznych utrzymywały się cały czas, bez względu na długość sesji. Kierunek ruchu oczu zmieniał się w zależności od drogi wprowadzania/wyciągania człowieka ze skanera (czyli kierunku pola). Zespół Robertsa uważa, że oczopląs położeniowy to rezultat wzajemnych oddziaływań między prądami elektrycznymi przepływającymi przez endolimfę a polem magnetycznym. Siła Lorentza wpływa na ruch ładunków elektrycznych w uchu wewnętrznym, odbierany przez komórki zmysłowe jako pobudzenie.
Akademicy z Uniwersytetu Johnsa Hopkinsa sądzą, że ich odkrycia mogą zmienić interpretację wyników uzyskanych za pomocą funkcjonalnego rezonansu magnetycznego. Ich autorzy analizują przepływ krwi w mózgu pod wpływem określonych zadań, tymczasem okazuje się, że skaner jako taki wzmacnia aktywność związaną z ruchem i równowagą. Wykazaliśmy, że nawet gdy sądzimy, że nic się w mózgu nie dzieje, kiedy ochotnicy znajdują się w aparacie, w rzeczywistości dzieje się dużo, ponieważ samo MRI wywołuje jakiś efekt – podsumowuje Roberts, dodając, że niewykluczone, iż silne pole skanera do rezonansu magnetycznego przyda się otolaryngologom jako bardziej komfortowa metoda badania błędnika (alternatywa dla standardowej elektronystagmografii).
-
-
Recently Browsing 0 members
No registered users viewing this page.