Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Kałamarnice słyszą, ale zupełnie inaczej niż my, ludzie. Nie polegają na zmianach ciśnienia wywołanych przez fale dźwiękowe, lecz wyczuwają generowany przez nie ruch wody (The Journal of Experimental Biology).

Wykrywają dźwięk samymi sobą, poruszając się w przód i w tył z falą dźwiękową - tłumaczy dr T. Aran Mooney, biolog morski z Woods Hole Oceanographic Institution, porównując zwierzę do owocu zatopionego w zastygłej galaretce. Gdy potrząsasz galaretką, przesuwa się cały blok, a wraz z nim owoc.

Amerykanie badali kalmara loligo długopłetwego (Loligo pealeii). Okazało się, że potrafi on wykryć dźwięki o niskiej częstotliwości do 500 herców. Zidentyfikuje więc pomruk fal czy wiatr, ale już nie komunikaty zębowców, np. delfinów, których łupem pada. Teraz zespół próbuje lepiej zrozumieć jego mechanizm słyszenia.

Jest taki pomysł, że skoro istoty te mają prymitywny zmysł słuchu, możemy je przecież wykorzystać w roli modelu ułatwiającego zrozumienie podstaw słyszenia lub utraty słuchu. W tym sensie opisywane badania miałyby odniesienie do ludzi.

Kałamarnice słyszą dzięki parzystym statocystom. Są to pęcherzyki zbudowane z komórek ze skierowanymi do wewnątrz wiciami. W środku znajduje się statolit (grudka węglanu wapnia), drażniący wypustki podczas ruchu. Wtedy generowany jest sygnał elektryczny, który powiadamia mózg, że zwierzę wykryło dźwięk. U ludzi kamyczki błędnikowe, nazywane inaczej otolitami, drażnią komórki rzęsate narządu Cortiego. Drgania są przetwarzane na sygnał elektryczny. Mając na uwadze te podobieństwa, Mooney i inni zastosowali podczas eksperymentów z kalmarami loligo test do badania słuchu u ludzkich niemowląt. Zwierzęta znieczulano chlorkiem magnezu, a później odtwarzano im przez głośniki różne dźwięki i mierzono reakcje.

Płytko pod skórą Mooney wszczepiał kalmarom elektrody. Umieszczał je w pobliżu wyjścia nerwu słuchowego ze statocysty. Kolejną elektrodę mocował na grzbiecie, by mierzyć bazową aktywność elektryczną. Następnie zanurzał L. pealeii w płytkim zbiorniku. Przez głośniki emitowano dźwięki z szerokiego zakresu częstotliwości. Stosowano po ok. 1000 powtórzeń dla każdej częstotliwości. Wyliczenie na podstawie 1000 pomiarów średniej pozwoliło wyeliminować naturalny losowy szum elektryczny - wyrażany w miliwoltach - który po każdym zasłyszanym dźwięku rozchodzi się w ciele wzdłuż nerwu.

Okazało się, że kalamar loligo długopłetwy słyszy podobnie jak wiele ryb, które nie mogą się pochwalić rozwiniętymi umiejętnościami w tym zakresie. Amerykanie sądzą, że kałamarnice stanowią pokarm tak wielu różnych zwierząt – od fok, przez walenie, po ptaki – bo nie wiedzą, że ktoś na nie poluje. Badanie tomografem komputerowym wykazało jednak, że dysponują bronią zupełnie innego rodzaju. Ich gęstość jest niemal taka sama jak wody (w wodzie skaner w ogóle ich "nie widział"), funkcjonują więc, jakby przez cały czas korzystały z czapki-niewidki. Posługujące się echolokacją drapieżniki ich nie wykrywają.

Wbrew pozorom ustalenie, czy kalmar loligo długopłetwy słyszy, było naprawdę ważne. Chodzi bowiem o wzrastające zaśmiecenie podwodnych ekosystemów hałasem. W oceanie jest coraz więcej dźwięków. Komercyjne łodzie, wydobycie ropy i gazu... Wszystko to generuje dużo hałasu. Dopóki nie wiadomo, czy dane zwierzę słyszy, nie da się stwierdzić, czy zjawiska te będą na nie wpływać.

W przyszłości Mooney zamierza ustalić, jak ważny jest słuch dla kałamarnic. Czy posługują się tym zmysłem w celach komunikacyjnych lub w czasie migracji. Biolog chce ustawić głośniki w różnych miejscach, by mierząc reakcje nerwów, stwierdzić, czy wyczuwają, gdzie znajduje się źródło dźwięków.

Ludzie, ryby i wiele innych zwierząt wykorzystuje komórki rzęsate do wykrywania dźwięku i ruchu. Są podobne do tych u klamarów, ale występują też pewne różnice. To prawdopodobnie podstawowa struktura, która wyewoluowała miliony lat temu, lecz później kręgowce i bezkręgowce obrały inne ścieżki rozwoju. Dowiadując się więcej o słyszeniu kałamarnic i ich komórkach rzęsatych, możemy dociec, co jest ważne w ludzkim słyszeniu i komórkach czuciowych. Na razie to jednak spekulacje. Trzeba więc poczekać na wyniki dalszych studiów...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Ponad miliard nastolatków i młodych dorosłych jest potencjalnie zagrożonych utratą słuchu, czytamy na łamach British Medical Journal Global Health. Ryzyko związane jest z częstym używaniem przez nich słuchawek i uczestnictwem w koncertach i innych wydarzeniach związanych ze słuchaniem głośnej muzyki.
      Światowa Organizacja Zdrowia ocenia, że obecnie 430 milionów ludzi na świecie ma uszkodzony słuch. Szczególnie narażeni są użytkownicy osobistych urządzeń nagłaśniających, takich jak słuchawki. Już wcześniej opublikowane badania wykazały, ze użytkownicy takich urządzeń bardzo często ustawiają głośność nawet na 105 decybeli. Do tego należy dodać uczestnictwo w wydarzeniach związanych z puszczaniem głośno muzyki, na których średnia głośność wynosi od 104 do 112 dB. Tymczasem bezpieczny poziom dźwięku wynosi 80 dB dla dorosłych i 75 dB dla dzieci.
      Autorzy najnowszych badań postanowili sprawdzić, jak bardzo rozpowszechnione wśród młodzieży i młodych dorosłych jest słuchanie nadmiernie głośnych dźwięków. Przejrzeli więc badania opublikowane w językach angielskim, francuskim, hiszpańskim i rosyjskim, które dotyczyły osób w wieku 12–34 lat. Poszukiwano tych badań, w których pod uwagę uwagę wzięto rzeczywistą zmierzoną głośność dźwięków oraz czas narażenia na ich oddziaływanie. Pod uwagę wzięto 33 badania. Część z nich uwzględniała pomiary dotyczące użycia urządzeń osobistych, część uczestnictwa w głośnych imprezach, a część zawierała dane o obu rodzajach narażenia na głośne dźwięki. W sumie badaniami objęto 19 046 uczestników i uwzględniono w nich 17 pomiarów dotyczących używania urządzeń oraz 18 pomiarów odnośnie uczestnictwa w głośnych imprezach.
      Z badań wynika, że na zbyt głośne szkodliwe dla słuchu dźwięki naraża się 24% młodzieży i 48% młodych dorosłych. To oznacza, że na utratę słuchu narażonych jest od 670 milionów do 1,35 miliarda osób.
      Oczywiście badania mają swoje ograniczenia. Ich autorzy nie brali pod uwagę np. różnic demograficznych w poszczególnych krajach, czy rozwiązań prawnych wprowadzonych w celu ochrony słuchu. Niemniej jednak pokazują one, jak bardzo poważny jest to problem. Ze szczegółami badań można zapoznać się w artykule Prevalence and global estimates of unsafe listening practices in adolescents and young adults: a systematic review and meta-analysis.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W jaki sposób mózg decyduje, jak najlepiej poruszać naszym ciałem? Okazuje się, że dla układu nerwowego to spore wyzwanie, gdyż mamy setki mięśni, które muszą być koordynowane setki razy na sekundę, a liczba możliwych wzorców koordynacji, z których musi wybierać mózg, jest większa niż liczba ruchów na szachownicy, mówi profesor Max Donelan z kanadyjskiego Simon Fraser University. Donelan i jego zespół badali, w jaki sposób ciało adaptuje się d nowych ruchów. A ich badania mogą mieć znaczenie zarówno dla treningu sportowców, jak i rehabilitacji niepełnosprawnych.
      Naukowcy zauważają, że bardzo często doświadczamy zmian zarówno w naszym organizmie, jak i w środowisku zewnętrznym. Być może lubisz biegać w niedzielę rano, Twoje mięśnie będą tym bardziej zmęczone im dłuższy dystans przebiegniesz. A może w czasie wakacji biegasz po plaży, gdzie podłoże jest luźne i nierówne w porównaniu z chodnikiem, po którym codziennie chodzisz. Od dawna jesteśmy w stanie rejestrować zmiany w sposobie poruszania się, ale dotychczas chyba nie docenialiśmy, w jaki sposób nasz organizm do takich zmian się adaptuje, stwierdza Donelan.
      Chcąc przyjrzeć się tym zmianom kanadyjscy neurolodzy podjęli współpracę z inżynierami z Uniwersytetu Stanforda, którzy specjalizują się w tworzeniu egzoszkieletów.
      Badania kanadyjsko-amerykańskiego zespołu przyniosły bardzo interesujące wyniki. Okazało się, że system nerwowy, ucząc się wzorców koordynacji nowych ruchów, najpierw rozważa i sprawdza wiele różnych wzorców. Stwierdzono to, mierząc zmienność zarówno samego ruchu ciała jako takiego, jak i ruchów poszczególnych mięśni i stawów. W miarę, jak układ nerwowy adaptuje się do nowego ruchu, udoskonala go, a jednocześnie zmniejsza zmienność. Naukowcy zauważyli, że gdy już nasz organizm nauczy się nowego sposobu poruszania się, wydatek energetyczny na ten ruch spada aż o 25%.
      Z analiz wynika również, że organizm odnosi korzyści zarówno z analizy dużej liczby możliwych wzorców ruchu, jak i ze zmniejszania z czasem liczby analizowanych wzorców. Zawężanie poszukiwań do najbardziej efektywnych wzorców pozwala bowiem na zaoszczędzenie energii.
      Zrozumienie, w jaki sposób mózg szuka najlepszych sposobów poruszania ciałem jest niezwykle ważne zarówno dla ultramaratończyka, przygotowującego się do biegu w trudnym terenie, jak i dla pacjenta w trakcie rehabilitacji po uszkodzeniu rdzenia kręgowego czy wylewu. Na przykład trener, który będzie wiedział, w którym momencie organizm jego podopiecznego zaadaptował się do nowego programu treningowego, będzie wiedział, kiedy można wdrożyć kolejne nowe elementy. A twórcy egzoszkieletów pomagających w rehabilitacji dowiedzą się, w którym momencie można przed pacjentem postawić nowe zadania, bo dobrze opanował wcześniejsze.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Specjalistom z University of Minnesota udało się powstrzymać komórki nowotworowe przed rozprzestrzenianiem się oraz zbadać w jaki sposób zostały one powstrzymane.
      Od lat wiadomo, że komórki nowotworowe rozprzestrzeniają się po określonych trasach. Wykorzystują swoiste „autostrady” do ruchu wewnątrz guza oraz, po jego opuszczeniu, po naczyniach krwionośnych i tkankach. Osoby, u których występuje duża liczba takich „autostrad” mają mniejsze szanse na przeżycie choroby. Dotychczas nie wiedziano, w jaki sposób komórki nowotworowe rozpoznają te drogi i jak się po nich poruszają.
      Uczeni z University of Minnesota badali w warunkach laboratoryjnych sposób przemieszczania się komórek raka piersi i wykorzystywali różne leki, próbując powstrzymać ich ruch. Okazało się, że gdy zaburzyli mechanizm, który zwykle pozwala komórkom na poruszanie się, nagle komórki nowotworowe zaczęły poruszać się jak bezkształtna galaretowata masa.
      Komórki nowotworowe są bardzo podstępne. Nie spodziewaliśmy się, że zmienią sposób poruszania się. To wymusiło na nas zmianę taktyki tak, by jednocześnie zablokować oba rodzaje ruchu. Dopiero wówczas przestały się poruszać i pozostały w miejscu, mowi jeden z autorów badań, profesor Paolo Provenzano.
      Przerzuty są przyczyną śmierci 90% osób umierających na nowotwory. Jeśli udałoby się zablokować ruch komórek, pacjenci i lekarze zyskaliby więcej czasu na wdrożenie skutecznego leczenia.
      Kolejnym krokiem badań będzie rozszerzenie eksperymentów na badania na zwierzętach. Mają nadzieję, że w ciągu kilku lat uda im się rozpocząć badania kliniczne na ludziach. Chcą też badać interakcje leków z komórkami nowotworowymi i ewentualne efekty uboczne.
      Naszym ostatecznym celem jest znalezienie sposobu na całkowite zablokowanie ruchu komórek nowotworowych i zwiększenie ruchliwości komórek układu odpornościowego, by te zwalczały nowotwór, mówi Provenzano.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdy zdrowa, ale nieaktywna osoba zacznie się ruszać, błyskawicznie zmienia się ekspresja genów w mięśniach szkieletowych. Naukowcy z Karolinska Institutet podkreślają, że to kwestia minut i wystarczy godzina ćwiczeń, by wzrosła aktywność genów wspomagających rozkład tłuszczów (Cell Metabolism).
      Nasze mięśnie są naprawdę plastyczne - twierdzi prof. Juleen Zierath. Szwedzi wykazali, że w DNA pobranym z mięśni szkieletowych ludzi, którzy właśnie ćwiczyli, jest mniej grup metylowych niż przed ćwiczeniami. Zmiany zachodzą w obrębie pasm DNA stanowiących "lądowisko" dla czynników transkrypcyjnych, które biorą udział we włączaniu genów odpowiedzialnych za adaptację mięśni do aktywności fizycznej.
      Badając zmiany epigenetyczne zachodzące wskutek forsownych ćwiczeń, Zierath, Romain Barrès i inni wykonali biopsje mięśnia udowego 8 mężczyzn, którzy prowadzili raczej siedzący tryb życia. Okazało się, że grupa metylowa zniknęła z kilku genów zaangażowanych w metabolizm tłuszczów. Demetylacja pozwalała na produkcję większej ilości białek.
      Zespół uważa, że za zaobserwowane zjawisko może odpowiadać uwalnianie jonów wapnia przez retikulum endoplazmatyczne komórek mięśniowych (ER zachowuje się tak pod wpływem potencjału czynnościowego, tutaj wywołanego ćwiczeniami). Kiedy pobrane próbki wystawiono na oddziaływanie kofeiny, która zwiększa poziom wapnia w mięśniach, także zaszła demetylacja. Zierath nie zaleca jednak zastępowania ruchu filiżanką kawy, bo mała czarna nie zapewnia pozostałych korzyści wynikających z ćwiczenia.
      Od jakiegoś czasu wiadomo, że ćwiczenia wywołują w mięśniach zmiany, w tym nasilenie metabolizmu cukrów i tłuszczów. My odkryliśmy, że najpierw zachodzą zmiany w metylacji. Co ciekawe, kiedy w laboratorium doprowadzano do skurczów mięśni, zachodziły identyczne zmiany epigenetyczne.
    • przez KopalniaWiedzy.pl
      Chcąc zbadać, w jaki sposób orangutany maksymalizują wydajność energetyczną ruchu, naukowcy z Uniwersytetu w Birmingham korzystają z pomocy freerunnerów.
      Skonstruowano makietę drzewnego habitatu - rodzaj poligonu ćwiczebnego. Freerunnerzy będą naśladowali 3 podstawowe ruchy małp: wspinanie, ponieważ zwierzęta muszą się wtedy przeciwstawiać sile ciążenia, bujanie między drzewami oraz skakanie, które choć efektywne energetycznie, jest stosowane jedynie w ostateczności. Dr Susannah Thorpe ma nadzieję, że odkrycia dotyczące konsumpcji energii uda się jakoś przełożyć na poprawę ludzkich osiągnięć.
      "Metody pomiaru energetyki lokomocji naczelnych są ograniczone. Większość danych pochodzi z modeli matematycznych. My proponujemy nową i bardziej bezpośrednią technikę oceny, jak koszty nadrzewnego przemieszczania się orangutanów są modulowane przez środowisko".
      Ludzie będą nosić 2 typy urządzeń: 1) respirometr do pomiaru zużycia tlenu oraz 2) przyspieszeniomierz z trybem zapisu danych. Biorąc pod uwagę płynną naturę i szeroki zakres ruchów małp, profesjonalni freerunnerzy wydają się świetnymi obiektami do badań.
      Brytyjczycy zamierzają stwierdzić, jak wydatkowanie energii zmienia się przy różnych typach lokomocji, różnej znajomości habitatu i różnym stopniu ustępowania gałęzi pod naporem ciała.
      Znajomość wymogów środowiskowych orangutanów to kwestia kluczowa dla właściwej ochrony gatunku oraz planowania reintrodukcji.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...