Jump to content
Forum Kopalni Wiedzy
  • ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Content

    • By KopalniaWiedzy.pl
      Na Princeton University powstał nowy typ czujnika, dzięki któremu możliwa będzie ocena stanu budynków czy mostów. Badanie zmian zachodzących w budowlach i wykrywanie pojawiających się uszkodzeń to bardzo ważne, a jednocześnie niełatwe zadanie.
      Sigurd Wagner i Patrick Gorrn postanowili wykorzystać laser, organiczne związki chemiczne i elastyczny polimer do stworzenia "skóry", którą można pokryć budowlę. Sprawdzając stan pokrycia można będzie oceniać zmiany zachodzące w samej budowli.
      Ich pomysł polega na użyciu poli(dimetylosiloksanu), którzy przygotowano tak, by miał falistą strukturę. Na jej powierzchnię nanosi się płynną mieszaninę molekuł organicznych. Gdy całość oświetlimy laserem ultrafioletowym, emitowane jest światło o konkretnej długości fali. W tym wypadku jest to widzialne czerwone światło. Jednak wszelkie zmiany na powierzchni "skóry", jej rozciągnięcie czy ścieśnienie, powodują zmianę długości fali emitowanego światła. Eksperymenty wykazały, że już ściśnięcie gumy o 2,2% prowadzi do zmian, które są wykrywane przez specjalne czujniki. Te potrafią zauważyć różnice sięgające zaledwie 5 nanometrów w długości fali. To bardzo dokładna metoda i jest to jej główna zaleta. W wielu przypadkach dochodzi bowiem do nieznacznych zmian struktury, które nie muszą objawiać się widocznymi uszkodzeniami. Te czujniki pozwalają zanotować takie zmiany - mówi Wagner.
      Dodatkową zaletą nowej metody jest możliwość sprawdzania zdrowia "skóry" z pewnej odległości oraz uniknięcie konieczności prowadzenia okablowania.
      Technologia z Princeton znajduje się obecnie w fazie eksperymentalnej. Uczeni szukają teraz jak najlepszych molekuł emitujących światło oraz metod ich umieszczania na PDMS. Wiemy, jak prowadzić eksperymenty. Ale nie znaleźliśmy jeszcze magicznej formuły - zauważył Wagner. 
    • By KopalniaWiedzy.pl
      Promień laserowy zwykle ma swoje źródło w odpowiednim - dużym lub małym - generatorze. A czy może mieć swoje źródło po prostu w samym powietrzu? Brzmi jak tania fantastyka... ale już jest możliwe. I może okazać się bardzo przydatne.
      „Powietrzny laser" to wynalazek uczonych z Princeton University. Potrafią oni na odległość wzbudzić atomy tlenu w powietrzu do takiego poziomu, aby uzyskać wygenerowanie promienia lasera. Taki stan trzeba naturalnie czymś wzbudzić, a służy do tego... laser.
      Urządzenie pozwala skoncentrować laser ultrafioletowy na wybranym, odległym punkcie w powietrzu o wielkości zaledwie milimetrowego walca. Wzbudzone impulsem atomy tlenu stygnąc generują podczerwone światło, które wędrując przez wzbudzony region pobudza kolejne elektrony, generując spójną wiązkę laserową, która „powraca" do źródła oryginalnego, wzbudzającego lasera. Na razie odległość skutecznego wzbudzenia wiązki powrotnej to około półtorej stopy, ale trwają prace nad zwiększeniem zasięgu, to kwestia odpowiedniej kalibracji i skupienia.
      Zaskakujący wynalazek ma jeden główny cel - ma służyć zdalnemu analizowaniu próbek powietrza. Powracająca laserowa wiązka niesie bowiem ze sobą precyzyjne informacje na temat jego składu i zanieczyszczeń. Istnieją już techniki laserowego, zdalnego próbkowana składu powietrza (LIDAR - light detection and ranging), ale bazują one na mierzeniu światła rozproszonego. Potrafią one zmierzyć gęstość zanieczyszczeń, ale bez identyfikowania ich składu; jeśli udaje się zidentyfikować zanieczyszczenia, to jedynie te intensywne, a i to bez ich dokładnej lokalizacji. Tymczasem „powietrzny laser" z Princeton pozwala na wykrycie nawet bardzo małych zanieczyszczeń w dokładnie określonym miejscu. Po dopracowaniu będzie mógł identyfikować nawet ilości śladowe poszukiwanych substancji, określając zarazem dokładnie ich położenie.
      Badania finansuje rządowe biuro Office of Naval Research w ramach programu Sciences Addressing Asymmetric Explosive Threats. Gotowy „powietrzny laser" posłuży głównie do wykrywania obecności ładunków wybuchowych, które zawsze uwalniają śladowe ilości znaczących substancji. Gotowe urządzenie ma być wielkości umożliwiającej zamontowanie na przykład na czołgu i próbkowanie powietrza przed pojazdem, wykrywając ewentualne zakopane pod drogą bomby. Taki aparat uratowałby życie wielu żołnierzom na przykład w Afganistanie.
      Oczywiście zastosowań, zarówno wojskowych, policyjnych, jak i cywilnych takiego zdalnego, laserowego sensora znajdzie się o wiele więcej. Jednocześnie z głównym zespołem badawczym pracuje drugi, który zajmuje się połączeniem nowego rodzaju detekcji ze standardowym radarem.
    • By KopalniaWiedzy.pl
      Badania naukowe nad nowymi rodzajami materiałów otwierają coraz to nowe perspektywy. Szukamy już nie tylko nanomateriałów, nadprzewodników i stopów z efektem magnetokalorycznym. Prace nad „topologicznym stanem powierzchniowym" obiecują powstanie szybszych układów elektronicznych.
      Naukowcy z Uniwersytetu w Princeton w swoich poszukiwaniach nowych rodzajów materiałów zainteresowali się tak zwanymi „izolatorami topologicznymi". Pod tą nazwą kryją się materiały, które będąc w swojej objętości izolatorami, jednocześnie przewodzą prąd na swojej powierzchni. Zjawisko to, związane z tzw. kwantowym efektem Halla, występuje pod wpływem pola magnetycznego. Prace zespołu z Princeton, którym kierował profesor Zahid Hasan wykazały, że efekt „topologicznego stanu powierzchniowego" może występować również bez obecności pola magnetycznego.
      Jednym z materiałów „topologicznych" jest pierwiastek antymon. Ekipa prof. Hasana zajęła się zbadaniem jego metalicznej odmiany. Badaniom pod skaningowym mikroskopem tunelowym poddano specjalnie wyhodowane kryształy metalicznego antymonu - dzieło Roberta Cavy z laboratorium chemicznego Uniwersytetu. Wykazały one wyjątkowe właściwości.
      Przepływ elektronów na powierzchni normalnych materiałów jest zakłócany przez niedoskonałości jego struktury. W skali mikroskopowej nierówności powierzchni spowalniają na ruch elektronów. Jak się okazuje, kryształy antymonu nie hamują przepływu prądu powierzchniowego mimo nierówności powierzchni. Wygląda to tak, jakby elektrony „omijały" wszystkie przeszkody a nawet przenikały przez nie. Jak mówi Ali Yazdani, fizyk z zespołu badawczego, mikroskopijne bariery na powierzchni tego materiału tworzą szczególny rodzaj fali elektronowej, która najwyraźniej wpływa na wzór przepływu prądu wokół powierzchniowych barier i niedoskonałości.
      Praktyczne zastosowanie odkrycia być może pozwoli na tworzenie pewniejszych połączeń elektrycznych w nanoskali i produkcję szybszych układów elektronicznych.
    • By KopalniaWiedzy.pl
      Nie kończą się nowe pomysły i koncepcje na zastosowanie grafenu - pojedynczej warstwy atomów węgla - w nanotechnologii. Do listy jego wielu atrakcyjnych cech trzeba dodać jeszcze jedną: dobrze współpracuje z DNA.
      Stworzenie nowych bioczujników, pozwalających na szybkie i bezbłędne identyfikowanie przyczyn chorób, to zajęcie wielu naukowców i laboratoriów na świecie. Narodowe Laboratorium Północno-Zachodniego Pacyfiku, należące do Departamentu Energii Stanów Zjednoczonych oraz Uniwersytet Princeton osiągnęły w tej dziedzinie wymierny sukces, łącząc grafen z ludzkim DNA.
      Podczas badań okazało się, że pojedyncza spirala DNA silnie i trwale łączy się z powłoką grafenową. To podsunęło myśl do sporządzenia czujnika, wykrywającego konkretne DNA w badanych próbkach. Pojedyncza spirala DNA z genu poszukiwanego czynnika chorobotwórczego jest umieszczana na powierzchni grafenu. Ponieważ naturalnym stanem cząstek DNA jest podwójna spirala, oddzielona nitka „poszukuje" odpowiadającej sobie pary. Zatem kiedy taki czujnik zanurzymy w krwi, lub innym płynie ustrojowym, umocowana na grafenie pojedyncza nić DNA będzie działać jak bardzo wybiórczy haczyk, łapiący swój odpowiednik. Jeśli poszukiwany czynnik „złapie przynętę" i przyczepi się do czujnika, ten generuje sygnał, który można zarejestrować.
      Sprawdzono, jaka jest czułość i wybiórczość projektowanego bioczujnika. Podczas prób z dołączanymi do wolno pływających nici DNA fluorescencyjnymi molekułami wykazano, że „łapanie" dokładnie poszukiwanych fragmentów jest dwukrotnie silniejsze niż łapanie fragmentów jedynie podobnych, które mogłyby fałszować wyniki.
      Zbadano też trwałość takiego czujnika - i tu dokonano kolejnego rewelacyjnego odkrycia. Okazało się, że grafen stanowi doskonałą ochronę nici DNA. Podczas prób z DNAzą - enzymem trawiącym DNA - okazało się, że podczas gdy wolno pływające nici są rozkładane natychmiast, nici DNA przytwierdzone do grafenowej powierzchni unikają zniszczenia przez 60 minut.
      Prostota działania i wykonania, oraz wysoka trwałość i skuteczność mogą sprawić, że rozpowszechnienie się tego typu czujników stanie się przełomem w diagnostyce medycznej. Nie koniec to jednak planów zespołu badawczego związanych z odkrytymi właściwościami grafenu. Skoro grafen tak dobrze współdziała z DNA, chcą poszukać sposobu na jej wykorzystanie do dostarczania leków bezpośrednio do chorych komórek, a może nawet wykorzystanie jej w terapii genowej.
    • By KopalniaWiedzy.pl
      Japońscy naukowcy twierdzą, że stworzyli pierwsze sztuczne DNA. W datowanym na 23 lipca Journal of the American Chemical Society Masahiko Inouye wraz ze współpracownikami z University of Toyama informuje o zbudowaniu stabilnej sztucznej nici DNA.
      Jeśli rewelacje Japończyków się potwierdzą, to ich odkrycie doprowadzi do powstania całej serii nowych materiałów, umożliwi też zbudowanie komputerów opartych na DNA.
      Obliczenia oparte na DNA wykorzystują cały kwas dezoksyrybonukleinowy jako "sprzęt", a poszczególne białka to "programy". Zachodzące reakcje służą do przeprowadzania obliczeń.
      Prototypowe komputery z DNA już powstają, jednak dopiero stworzenie sztucznego DNA umożliwi postęp prac nad nimi, gdyż specjaliści będą mogli dowolnie je projektować, w zależności od przewidywanych zastosowań. Takie komputery będą nie tylko niezwykle małe, ale również bardzo wydajne. Olbrzymią zaletą DNA jest również fakt, iż może ono przechowywać olbrzymią ilość informacji. Pół kilograma kwasu dezoksyrybonukleinowego wystarczy, by zapisać w nim dane zawarte na wszystkich obecnie wykorzystywanych dyskach twardych.
×
×
  • Create New...