Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Do związanych z nowotworami uszkodzeń DNA dochodzi już wkrótce po wypaleniu papierosa – dowodzą naukowcy z University of Minnesota. Efekt jest widoczny tak szybko, że stanowi odpowiednik wstrzyknięcia substancji bezpośrednio do krwiobiegu.

W studium wzięło udział 12 ochotników. Akademicy skupili się zwłaszcza na tym, co dzieje się we krwi z jednym z wielopierścieniowych węglowodorów aromatycznych (WWA) - fenantrenie. Dodawano go do wypalanych przez badanych papierosów.

By WWA zadziałały kancerogennie na płuca, muszą zostać poddane metabolicznej aktywacji. W 3-stopniowej sekwencji tworzą się addukty - w tym wypadku połączenia dwóch substancji chemicznych, czyli DNA i epoksydów dioli (ang. diol epoxide) – które mogą powodować mutacje i rozpoczynać proces nowotworzenia. Co ciekawe, naukowcy po raz pierwszy zbadali ten szlak u ludzi narażonych na kontakt z WWA w wyniku palenia papierosów.

W eksperymentalnych papierosach wykorzystano stabilną izotopowo pochodną fenantrenu, najprostszego WWA z regionem zatokowym, z wchodzącym w jej skład deuterem (ang. [D10]phenanthrene fenantren). Specjaliści podkreślają, że metabolity WWA wiążą się kowalencyjnie z DNA lub RNA komórki. Szczególne możliwości w tym zakresie mają powstające w I fazie metabolizmu epoksydy dioli, a zwłaszcza te z nich, u których wiązanie epoksydowe znajduje się we wspomnianym wcześniej rejonie zatokowym cząsteczki. Dzieje się tak, ponieważ cechuje go podwyższona reaktywność zarówno biologiczna, jak i chemiczna.

Po wypaleniu papierosów przez 12 ochotników w osoczu poszukiwano tetraolu [D10]PheT - głównego końcowego związku metabolicznej ścieżki fenantrenu. Okazało się, że trzystopniowa ścieżka prowadząca do powstawania epoksydioli była aktywowana dosłownie w mgnieniu oka. Poziom [D10]PheT w osoczu wszystkich badanych był maksymalny w najwcześniejszych uwzględnianych punktach czasowych (15-30 min po paleniu), a potem spadał.

Share this post


Link to post
Share on other sites

<p><strong>... (WWA) - fenantrenie. Dodawano go do wypalanych przez badanych papierosów.</p><p> ...W eksperymentalnych papierosach wykorzystano stabilną izotopowo pochodną fenantrenu, najprostszego WWA z regionem zatokowym, z wchodzącym w jej skład deuterem ...</p>

czyli sztucznie dodali do papierosów jakąś substancje? nie rozumiem, w takim razie to nie wiele ma wspólnego z papierosem

Share this post


Link to post
Share on other sites

Z artykułu wynika, że sprawdzali szybkość, z jaką kancerogenna- po przemianie metabolicznej- substancja wpływa na organizm. Rozumiem, że była ona czymś w rodzaju markera. Takich substancji w papierosie jest dużo i działają na podobnej zasadzie (jeśli chodzi o aktywację kancerogenności po zmetabolizowaniu), więc jest to chyba dobry obraz działania ogółu tych substancji.

Share this post


Link to post
Share on other sites

papierosy, alkohol czy kawę kupić, można bez limitów czy ograniczeń innych to oznacza, że każdy pije i pali co chce. Jeśli te substancje poprawiają samopoczucie i nie zabijają to szkodzą malutkow  takim razie. Aseksualnemu hedonisto-nihiliście, który nie ma zamiaru mieć potomstwa to nie robi różnicy żadnej czy je spożywa mając w dodatku predyspozycje do autodestrukcji ciche. Jeśli nie wolno zabronić człowiekowi zażywania tych substancji to powinna być również legalna broń palna, narkotyki i prostytucja . . .

Share this post


Link to post
Share on other sites

Z artykułu wynika, że sprawdzali szybkość, z jaką kancerogenna- po przemianie metabolicznej- substancja wpływa na organizm. Rozumiem, że była ona czymś w rodzaju markera. Takich substancji w papierosie jest dużo i działają na podobnej zasadzie (jeśli chodzi o aktywację kancerogenności po zmetabolizowaniu), więc jest to chyba dobry obraz działania ogółu tych substancji.

tak , oczywiście był to rodzaj markera, ale szybkość z jaką szkodzi dana substancja zależy też od samej substancji, więc nie można wniosków bezpośrednio przekładać na działanie papierosa

Share this post


Link to post
Share on other sites

Ok, ale fenantren wchodzi w skład papierosa, więc w tym przypadku jak najbardziej możesz wyciągnąć taki wniosek.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Bez cienia wątpliwości wykazaliśmy, że w żywych komórkach powstają poczwórne helisy DNA. To każe nam przemyśleć biologię DNA, mówi Marco Di Antonio z Imperial College London (CL). Naukowcy po raz pierwszy w historii znaleźli poczwórne helisy DNA w zdrowych komórkach ludzkiego organizmu. Dotychczas takie struktury znajdowano jedynie w niektórych komórkach nowotworowych. Udawało się je też uzyskać podczas eksperymentów w laboratorium.
      Teraz okazuje się, że poczwórna helisa DNA może występować też w żywych, zdrowych komórkach ludzkiego ciała. Dotychczas struktury takiej, zwanej G-kwadrupleks (G4-DNA), nie zauważono w żywych komórkach, gdyż technika ich wykrywania wymagała zabicia badanej komórki. Teraz naukowcy z Uniwersytetu w Cambridge, ICL oraz Uniwersytetu w Leeds opracowali nowy znacznik fluorescencyjny, który przyczepia się go G4-DNA w żywych komórkach. To zaś pozwala na śledzenie formowania się tej struktury i badania roli, jaką odgrywa ona w komórce.
      Odkrycie poczwórnej helisy w komórkach, możliwość prześledzenia jej roli i ewolucji otwiera nowe pole badań nad postawami biologii i może przydać się w opracowaniu metod leczenia wielu chorób, w tym nowotworów.
      Teraz możemy obserwować G4 w czasie rzeczywistym w komórkach, możemy badać jej rolę biologiczną. Wiemy, że struktura ta wydaje się bardziej rozpowszechniona w komórkach nowotworowych. Możemy więc sprawdzić, jaką odgrywa ona rolę, spróbować ją zablokować, co potencjalnie może doprowadzić do pojawienia się nowych terapii, stwierdzają autorzy najnowszych badań.
      Naukowcy sądzą, że do formowania się kwadrupleksu dochodzi po to, by czasowo otworzyć helisę, co ułatwia różne procesy, jak np. transkrypcja.
      Wydaje się, że G4 jest częściej powiązana z genami biorącymi udział w pojawianiu się nowotworów. Jeśli struktura ta ma związek z chorobami nowotworowymi, to być może uda się opracować leki blokujące jej formowanie się.
      Już wcześniej ten sam zespół naukowcy wykorzystywał przeciwciała i molekuły, które były w stanie odnaleźć i przyczepić się do G4. Problem jednak w tym, że środki te musiały być używane w bardzo wysokich stężeniach, co groziło zniszczeniem DNA. To zaś mogło prowadzić do formowania się G4, zatem technika, której celem było wykrywanie G4 mogła de facto powodować jego tworzenie się, zamiast znajdować to, co powstało w sposób naturalny.
      Czasem naukowcy potrzebują specjalnych próbników, by obserwować molekuły wewnątrz żywych komórek. Problem w tym, że próbniki te mogą wchodzić w interakcje z obserwowanym obiektem. Dzięki mikroskopii jednocząsteczkowej jesteśmy w stanie obserwować próbniki w 1000-krotnie mniejszym stężeniu niż wcześniej. W tym przypadku próbnik przyczepia się do G4 w ciągu milisekund, nie wpływa na jej stabilność, co pozwala na badanie zachowania G4 w naturalnym środowisku bez wpływu czynników zewnętrznych.
      Dotychczasowe badania wykazały, że G4 forumuje się i znika bardzo szybko. To sugeruje, że jest to tymczasowa struktura, potrzebna do wypełnienia konkretnych funkcji, a gdy istnieje zbyt długo może być szkodliwa dla komórek.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gdy przypatrzymy się strukturze nici DNA czy RNA zauważymy, że zawsze są one skręcone w prawo. Nigdy w lewo. Z biologicznego czy chemicznego punktu widzenia nie ma żadnego powodu, dla którego we wszystkich formach życia widać taką regułę. Wszystkie znane reakcje chemiczne powodują powstanie molekuł skręconych zarówno w prawo, jak i w lewo. Ta symetria jest czymś powszechnym. Nie ma też żadnego powodu, dla którego skręcone w lewo DNA miałoby być w czymkolwiek gorsze, od tego skręconego w prawo. A jednak nie istnieje lewoskrętne DNA. To tajemnica, która wymaga wyjaśnienia.
      Wielu naukowców sądzi, że taka struktura DNA i RNA pojawiła się przez przypadek, że skręcony w prawo genom był może nieco częstszy i w toku ewolucji wyparł ten skręcony w lewo. Naukowcy od ponad 100 lat zastanawiają się nad tym problemem.
      Niedawno na łamach Astrophysical Journal Letters ukazała się interesująca teoria, której autorzy twierdzą, że o takim, a nie innym kształcie genomu zadecydował... kosmos. Ich praca wskazuje na wpływ czynnika, który zdecydował o kierunku skręcenia genomu, a którego nie braliśmy dotychczas pod uwagę. Wydaje się to bardzo dobrym wytłumaczeniem, mówi Dimitar Sasselov, astronom z Harvard University i dyrektor Origins of Life Initiative.
      Twórcami nowej niezwykle interesującej hipotezy są Noemie Globus, astrofizyk wysokich energii z New York University i Center For Computational Astrophysics na Flatiron Institure oraz Roger Blandford, były dyrektor Kavli Institute for Particle Astrophysics and Cosmology na Uniwersytecie Stanforda. Oboje spotkali się w 2018 roku i w miarę, jak dyskutowali różne kwestie, zwrócili uwagę, że promieniowanie kosmiczne ma podobną prawostronną preferencję jak DNA. Takie wydarzenia jak rozpad cząstek zwykle nie wykazują preferencji, przebiegają równie często w prawo, jak i w lewo. Jednak rzadkim wyjątkiem od reguły są tutaj piony. Rozpad naładowanych pionów odbywa się według oddziaływań słabych. To jedyne oddziaływanie podstawowe o znanej asymetrii. Gdy piony uderzają w atmosferę, rozpadają się, tworząc cały deszcz cząstek, w tym mionów. Wszystkie miony mają tę samą polaryzację, która powoduje, że z nieco większym prawdopodobieństwem jonizują jądra atomów w genomie skręconym w prawo.
      Pierwsze ziemskie organizmy, które prawdopodobnie były czymś niewiele więcej niż nagim materiałem genetycznym, zapewne występowały w dwóch odmianach. Z genomem skręconym w lewo lub w prawo. Globus i Blandford wyliczyli, że w sytuacji promieniowania kosmicznego skręcającego w prawo, cząstki uderzające w ziemię z nieco większym prawdopodobieństwem wybijały elektron z genomu skręconego w prawo niż w lewo. Miliony czy miliardy cząstek promieniowania kosmicznego były potrzebne, by wybić jeden elektron z jednego genomu. Ale ta minimalna przewaga mogła wystarczyć. Wybicie elektronu prowadziło do mutacji. Zatem promieniowanie kosmiczne było dodatkowym czynnikiem wymuszającym ewolucję. Dzięki niemu genom skręcony w prawo rozwijał się nieco szybciej. Z czasem zyskał przewagę konkurencyjną nad genomem skręconym w lewo.
      Uczeni nie chcą jednak poprzestać na hipotezie. Pani Globus skontaktowała się z Davidem Deamerem, biologiem i inżynierem z University of California w Santa Cruz. Ten podpowiedział jej, że najprostszym testem, jaki przychodzi mu do głowy, będzie wykorzystanie standardowego testu Amesa. To metoda diagnostyczna sprawdzająca siłę oddziaływania mutagenu na bakterie. Deamer zaproponował, by zamiast poddawać bakterie działaniu związku chemicznego, zacząć je bombardować mionami i sprawdzić, czy wywoła to u nich przyspieszone mutacje.
      Jeśli eksperyment się powiedzie i pod wpływem mionów DNA bakterii będzie ulegało szybszym mutacjom, będzie do bardzo silne poparcie dla hipotezy Globus i Blandforda. Nie wyjaśni to jednak, dlaczego w ogóle pojawił się materiał genetyczny skręcony w lewo lub w prawo.
      To będzie bardzo trudny element do udowodnienia. Jeśli jednak ta hipoteza zyska potwierdzenie, będziemy mieli jeszcze jeden, niezwykle interesujący, mechanizm ewolucyjny, mówi Jason Dworkin, astrobiolog z Goddard Space Flight Center.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy miał wyjątkową okazję zbadania wczesnej fazy zainfekowania tkanek koronawirusem u pacjentów, u których jeszcze nie pojawiły się objawy COVID-19. Uczeni z University of Chicago oraz Zhongnan Hospital w Wuhan, badali tkankę płuc, którą usunięto pacjentom z powodu gruczolakoraka. Później okazało się, że już w czasie zabiegu osoby te były zarażone SARS-CoV-2. Pojawiła się więc unikatowa okazja przyjrzenia się bardzo wczesnemu stadium rozwoju COVID-19.
      To pierwsze badania opisujące patologię choroby spowodowanej przez SARS-CoV-2 czyli COVID-19. Dotychczas nie przeprowadzono bowiem biopsji ani autopsji. Jako, że obaj pacjenci w chwili operacji nie wykazywali objawów choroby, obserwowane przez nas zmiany to prawdopodobnie wczesne fazy patologii płuc wywołanej COVID-19, mówi jeden z głównych autorów badań Shu-Yuan Xiao z Chicago. Dzięki takiemu zbiegowi okoliczności może to być jedyna okazja, by zbadać wczesną fazę rozwoju choroby. Taka okazja może po raz drugi się nie powtórzyć. Autopsje czy biopsje pokażą nam bowiem późne lub końcowe stadia rozwoju, dodaje uczony.
      Dotychczas naukowcy wykonali opisy kliniczne choroby, znamy też opisy badań obrazowych. Jednak badań patologicznych jeszcze nie prowadzono. Przyczynami braku badań patologicznych z autopsji lub biopsji są m.in. gwałtowne pojawienie się epidemii, bardzo duża liczba pacjentów w szpitalach, niedostateczna liczba personelu medycznego oraz duża liczba zakażeń. To wszystko powoduje, że inwazyjne techniki diagnostyczne nie są obecnie priorytetem, zauważają autorzy badań.
      Szczęśliwie dla nauki zdarzyło się tak, że w czasie, gdy wybuchła epidemia, operowano dwie osoby, u których konieczne okazało się wycięcie tkanki płuc, a później okazało się, że w chwili operacji obie osoby były zarażone koronawirusem.
      Pierwsza z tych osób to 84-letnia kobieta. Przyjęto ją do szpitala po wykryciu guza w prawym płucu. Kobieta od 30 lat cierpiała na nadciśnienie, miała też cukrzycę. Mimo operacji i intensywnej opieki medycznej pacjentki nie udało się uratować. Później okazało się, że osoba, z którą leżała na jednej sali w szpitalu, była zainfekowana SARS-CoV-2.
      Drugim pacjentem był 73-letni mężczyzna u którego, również w prawym płucu, zauważono niewielkiego guza. Mężczyzna ten od 20 lat cierpiał na nadciśnienie. Dziewięć dni po operacji pojawiła się u niego gorączka, suchy kaszel, bóle w mięśniach i klatce piersiowej. Testy potwierdziły zarażenie SARS-CoV-2. Po 20 dniach leczenia na oddziale zakaźnym mężczyzna został wypisany do domu.
      Badania patologiczne tkanki płucnej pobranej od obu pacjentów wykazały, że oprócz guza widoczne są też w niej obrzęk, wysięk białkowy, ogniskowa reaktywna hiperplazja pneumocytów z niejednolitym zapalnym naciekiem komórkowym oraz komórczaki. Obecność zmian chorobowych na długo przed wystąpieniem objawów zgodne jest z długim okresem inkubacji COVID-19, który zwykle wynosi od 3 do 14dni.
      Mimo, że u badanej kobiety nigdy nie rozwinęła się gorączka, to jednak pełna morfologia krwi – szczególnie z 1. dnia po operacji – wykazała wysoki poziom białych krwinek i limfocytopenię, co jest zgodne z obrazem klinicznym COVID-19. Autorzy badań zauważają, że może być to pomocne spostrzeżenie na przyszłość. Naukowcy stwierdzili również, że czas, jaki upływa przed pojawieniem się pierwszych zmian chorobowych w płucach a pojawieniem się pierwszych objawów COVID-19 może być dość długi. Nawet u osób, które mają gorączkę, próbka pobrana z gardła do dalszych badań może dać wynik ujemny, gdyż wirus może nie być jeszcze obecny w górnych drogach oddechowych, pomimo wywołania stanu zapalnego w płucach.
      Odkrycia te wyjaśniają również, dlaczego na wczesnym etapie epidemii doszło do tak wielu zarażeń wśród pracowników służby zdrowia. Wiele osób zgromadziło się w szpitalach, nie wykazywali oni objawów, a przyjmujący ich lekarze i pielęgniarki nie byli odpowiednio chronieni.
      Autorzy powyższych badań mają nadzieję, że gdy zostaną też wykonane badania tkanek osób zmarłych i wykazujących objawy COVID-19, zyskamy pełniejszą wiedzę na temat choroby i jej rozwoju od samych początków do jej ostrej fazy. Pobrane próbki mogą też posłużyć do udoskonalenia testów diagnostycznych.
      Opis badań został udostępniony w sieci [PDF].

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po raz pierwszy w historii sąd federalny nakazał udostępnienie policji całej bazy danych DNA, w tym profili, których właściciele nie wyrazili zgody na udostępnienie.
      Od czasu, gdy w ubiegłym roku policja – po przeszukaniu publicznej bazy danych DNA – schwytała seryjnego mordercę sprzed dziesięcioleci, udało się dzięki takim bazom rozwiązać wiele nierozstrzygniętych spraw. Jednak działania policji budzą zastrzeżenia dotyczące prywatności. We wrześniu Departament Sprawiedliwości, by rozwiać te obawy, wydał instrukcję, zgodnie z którą policja może przeszukiwać tego typu bazy danych wyłącznie w sprawach o przestępstwa związane z użyciem przemocy oraz tam, gdzie właściciel profilu wyraził zgodę.  Już zresztą wcześniej, bo w maju witryna GEDmatch, na którą każdy może wgrać swój profil DNA, ograniczyła policji dostęp do tych profili, których właściciele wyrazili zgodę. Tym samym liczba profili DNA do których policja ma dostęp na GDAmatch spadła z 1,3 miliona do zaledwie 185 000.
      Pewien policyjny detektyw z Florydy prowadzi śledztwo w sprawie seryjnego gwałciciela. Uznał, że dostęp jedynie do 185 000 profili z GEDmatch to zbyt mało i wystąpił do sądu z wnioskiem, by ten, nakazał witrynie udostępnienie mu całej bazy. Detektyw ma nadzieję, że jacyś krewni gwałciciela wgrali tam informacje o swoim DNA, dzięki którym uda się znaleźć sprawcę. Sędzia przychylił się do prośby detektywa. Wyrok taki od razu wzbudził kontrowersje.
      Prawnicy mówią, że to, czy właściciele profili mają powody do zmartwień zależy od prowadzenia każdej ze spraw i trudno jest na tym etapie wyrokować, jak rozstrzygnięcie sądu ma się do amerykańskiego prawa. Zwracają jednak uwagę, że GEDmatch to niewielka firma. Mimo to posiadana przez nią baza 1,3 miliona profili oznacza, że w bazie tej znajduje się profil kuzyna trzeciego stopnia lub kogoś bliżej spokrewnionego z 60% białych Amerykanów.
      Firmy takie jak 23andMe czy Ancestry posiadają znacznie bardziej rozbudowane bazy, a zatem pozwalają na sprofilowanie znacznie większej liczby obywateli USA. Zresztą 23andMe już zapowiedziała, że jeśli otrzyma podobny wyrok to będzie się od niego odwoływała. Prawnicy zauważają, że z jednej strony, jeśli w przyszłości pojawi się takie odwołanie i rozpocznie się batalia sądowa, którą będzie rozstrzygał jeden z Federalnych Sądów Apelacyjnych lub Sąd Najwyższy, to ustanowiony zostanie silny precedens. Z drugiej strony osoba, która zostałaby oskarżona dzięki przeszukaniu takiej bazy mogłaby zapewne powoływać się na Czwartą Poprawkę, która zakazuje nielegalnych przeszukań.
      Specjaliści mówią, że jeśli podobne wnioski zaczną pojawiać się coraz częściej i sądy będą się do nich przychylały, to będzie to poważny problem dla witryn z bazami danych DNA.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy ze szwedzkiego Uniwersytetu Technologicznego Chalmers obalili teorię mówiącą, że obie nici DNA są utrzymywane przez wiązania atomów wodoru. Okazuje się, że kluczem są siły hydrofobowe, nie atomy wodoru. Odkrycie to może mieć duże znaczenie dla medycyny i innych nauk biologicznych.
      Helisa DNA składa się z dwóch nici zawierających molekuły cukru i grupy fosforanowe. Pomiędzy obiema nićmi znajdują się zasady azotowe zawierające atomy wodoru. Dotychczas sądzono, że to wiązania atomów wodoru utrzymują razem obie nici.
      Jednak uczeni z Chalmers wykazali właśnie, że kluczem do utrzymania razem nici jest hydrofobowe wnętrze molekuł zanurzonych w środowisku składającym się głównie z wody. Zatem mamy tutaj hydrofilowe otoczenie i hydrofobowe molekuły odpychające otaczającą je wodę. Gdy hydrofobowe molekuły znajdują się w hydrofilowym środowisku, grupują się razem, by zmniejszyć swoją ekspozycję na wodę.
      Z kolei wiązania wodorowe, które dotychczas postrzegano jako elementy utrzymujące w całości podwójną helisę DNA, wydają się mieć więcej wspólnego z sortowaniem par bazowych, zatem z łączniem się helisy w odpowiedniej kolejności.
      Komórki chcą chronić swoje DNA i nie chcą wystawiać ich na środowisko hydrofobowe, które może zawierać szkodliwe molekuły. Jednocześnie jednak DNA musi się otwierać, by było użyteczne. Sądzimy, że przez większość czasu komórki utrzymują DNA w środowisku wodny, ale gdy chcą coś z DNA zrobić, na przykład je odczytać, skopiować czy naprawić, wystawiają DNA na środowisko hydrofobowe, mówi Bobo Feng, jeden z autorów badań.
      Gdy na przykład dochodzi do reprodukcji, pary bazowe odłączają się i nić DNA się otwiera. Enzymy kopiują obie strony helisy, tworząc nową nić. Gdy dochodzi do naprawy uszkodzonego DNA, uszkodzone części są wystawiane na działanie hydrofobowego środowiska i zastępowane. Środowisko takie tworzone jest przez proteinę będącą katalizatorem zmiany. Zrozumienie tej proteiny może pomóc w opracowaniu wielu leków czy nawet w metodach leczenia nowotworów. U bakterii za naprawę DNA odpowiada proteina RecA. U ludzi z kolei proteina Rad51 naprawia zmutowane DNA, które może prowadzić do rozwoju nowotworu.
      Aby zrozumieć nowotwory, musimy zrozumieć, jak naprawiane jest DNA. Aby z kolei to zrozumieć, musimy zrozumieć samo DNA. Dotychczas go nie rozumieliśmy, gdyż sądziliśmy, że helisa jest utrzymywana przez wiązania atomów wodoru. Teraz wykazaliśmy, że chodzi tutaj o siły hydrofobowe. Wykazaliśmy też, że w środowisku hydrofobowym DNA zachowuje się zupełnie inaczej. To pomoże nam zrozumieć DNA i proces jego naprawy. Nigdy wcześniej nikt nie umieszczał DNA w środowisku hydrofobowym i go tam nie badał, zatem nie jest zaskakujące, że nikt tego wcześniej nie zauważył, dodaje Bobo Feng.
      Szwedzcy uczeni umieścili DNA w hydrofobowym (w znaczeniu bardzo zredukowanej koncentracji wody) roztworze poli(tlenku etylenu) i krok po kroku zmieniali hydrofilowe środowisko DNA w środowisko hydrofobowe. Chcieli w ten sposób sprawdzić, czy istnieje granica, poza którą DNA traci swoją strukturę. Okazało się, że helisa zaczęła się rozwijać na granicy środowiska hydrofilowego i hydrofobowego. Bliższa analiza wykazała, że gdy pary bazowe – wskutek oddziaływania czynników zewnętrznych – oddzielają się od siebie, wnika pomiędzy nie woda. Jako jednak, że wnętrze DNA powinno być suche, obie nici zaczynają przylegać do siebie, wypychając wodę. Problem ten nie istnieje w środowisku hydrofobowym, zatem tam pary bazowe pozostają oddzielone.

      « powrót do artykułu
×
×
  • Create New...