Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Naukowcy twierdzą, że standardowy sposób znakowania pingwinów – zakładanie przepasek na wąskich skrzydłach pełniących rolę płetw napędowych – niekorzystnie wpływa na ich przeżycie i rozmnażanie, zmniejszając ostatecznie tempo powiększania się populacji. Zespół Claire Saraux z Uniwersytetu w Strasburgu przez 10 lat obserwował pingwiny królewskie (Aptenodytes patagonicus) i ustalił, że "zaobrączkowane" osobniki miały o 39% mniej piskląt i o 16% niższy wskaźnik przeżywalności od ptaków nieoznakowanych.

Specjaliści sądzą, że uzyskane wyniki obalają tezę, że ptaki ostatecznie zaadaptują się do opaski. Ornitolodzy zauważyli, że po dekadzie oznakowane pingwiny nadal zjawiały się później na obszarach godowo-lęgowych i odbywały dłuższe wyprawy po jedzenie. Ekipa stwierdziła, że reakcje opaskowanych ptaków na zmienność klimatu (zmiany w temperaturze wody na powierzchni morza i w indeksie oscylacji południowej; SOI - od ang. Southern Oscillation index – oblicza się z różnicy ciśnień miesięcznych i sezonowych między Tahiti a wyspą Darwin) były inne niż u nieoznakowanych.

Francusko-norweski zespół uważa, że kontynuowanie takiego znakowania pingwinów byłoby w większości sytuacji nieetyczne. Opaski stosuje się od kilkudziesięciu lat. Umożliwiają one zidentyfikowanie poszczególnych zwierząt z odległości.

Wcześniejsze studia dawały sprzeczne rezultaty. Jedne sugerowały, że znakowanie jest szkodliwe (podczas pływania opaski generują one tarcie albo ściągają pingwinom na głowę drapieżniki, ponieważ odbijają światło i pokazują, gdzie dokładnie znajduje się nielot), podczas gdy inne – jednoroczne – prowadziły do odwrotnych wniosków. Dlatego też metodę stosowano nadal.

By wyjaśnić sprawę raz na zawsze, naukowcy postanowili przeprowadzić wieloletnie badanie podłużne z prawdziwego zdarzenia. Podążali tropem 100 pingwinów królewskich z kolonii zamieszkującej wyspę Possession u wybrzeży Antarktydy. Połowie ptaków założono opaski, a reszcie wszczepiono pod skórę transpondery. Po upływie 10 lat żyło 18 ptaków z grupy transponderowej i 10 z grupy z opaskami.

Saraux uważa, że pingwinom można zakładać opaski tylko podczas badań na lądzie, zdejmując je, nim ptak wejdzie do morza. Wtedy pozostają one bezpieczne i użyteczne, gdyż odróżnienie w 50-tysięcznej kolonii "własnych" ptaków naprawdę nie jest łatwe. Wiele grup badawczych nadal stosuje opaski w studiach morskich i jestem prawie pewna, że dojdzie do kontrowersji – niektórzy mogą chcieć kontynuować proceder na innych gatunkach pingwinów, a przecież skutek będzie dla nich zapewne taki sam.

Wyjaśnieniem dłuższych wypraw po pokarm i opóźnionego przybywania na obszar lęgowy jest najprawdopodobniej zwiększone tarcie podczas pływania. Naukowcy zaobserwowali to u trzymanych w niewoli pingwinów białobokich.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

I tak właśnie pomiar wpływa na układ mierzony

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Śląskiego oraz Akademii Wychowania Fizycznego w Katowicach zaprojektowali płetwy, które są ultralekkie, zbudowane z materiałów o właściwościach przeciwdrobnoustrojowych oraz bezpieczne dla stawów skokowych i kolanowych. Zostały one objęte ochroną patentową przyznaną przez Urząd Patentowy RP oraz ochroną wzoru przemysłowego na mocy certyfikatu przyznanego przez Urząd Unii Europejskiej ds. Własności Intelektualnej (EUIPO).
      Płetwy tego typu przeznaczone są do pływania rekreacyjnego, sportowego, rehabilitacyjnego lub nurkowania. Mogą znaleźć także zastosowanie w nauce pływania oraz w pływaniu amatorskim.
      Przeciwbakteryjny i przeciwgrzybiczny materiał
      Na ten jeden produkt składa się tak naprawdę kilka wynalazków i wzorów przemysłowych. Zależało nam przede wszystkim na tym, aby płetwy były wykonane z materiału o właściwościach przeciwbakteryjnych i przeciwgrzybicznych, co ma szczególne znaczenie na basenach czy w wypożyczalniach sprzętu pływackiego – mówi dr hab. Andrzej Swinarew, prof. UŚ, współautor chronionych rozwiązań.
      Na rynku dostępnych jest wiele takich akcesoriów, jednak brakuje bezpiecznych i higienicznych płetw dla użytkowników, które byłyby z jednej strony przyjazne dla skóry człowieka, a z drugiej – chroniły tę skórę przed bakteriami i grzybami. Naukowcy zaproponowali więc odpowiednie materiały, z których mogłyby być skonstruowane przede wszystkim buty płetwy. Chodzi o elastomer termoplastyczny z domieszkami nanocząstek, dzięki którym autorzy wynalazków uzyskali interesujące właściwości przeciwdrobnoustrojowe. Zaprojektowany produkt może więc być z powodzeniem stosowany na basenach oraz w ośrodkach rehabilitacyjnych i sportowych, w tym w wypożyczalniach sprzętu pływackiego. To rozwiązanie zostało objęte ochroną patentową.
      Sprawność hydrodynamiczna
      Jestem pracownikiem Uniwersytetu Śląskiego, zajmuję się inżynierią biomedyczną, ale pracuję także na AWF-ie w Katowicach w Katedrze Sportów Indywidualnych. Wynalazki są przykładem łączenia kilku moich zainteresowań. Oprócz odpowiedniego materiału, równie ważne było więc poprawienie sprawności hydrodynamicznej takich płetw – mówi prof. Andrzej Swinarew.
      Płetwy są ultralekkie, składają się z buta z zastosowanym systemem zapięcia paskowego oraz specjalnie zaprojektowanym wyprofilowanym piórem, dzięki któremu naukowcom udało się poprawić sprawność hydrodynamiczną produktu.
      Zależało nam na tym, aby płetwy, pełniąc swoje podstawowe funkcje, były jednocześnie bardziej przyjazne dla naszego organizmu. Jestem pasjonatem pływania, uczę ludzi tego sportu, wiedziałem więc, jakich rozwiązań szukamy. Wspólnie z innymi naukowcami opracowaliśmy modele płetw, opierając się na naszej wiedzy i doświadczeniu – dodaje naukowiec z Uniwersytetu Śląskiego.
      Płetwy są więc elastyczne, dzięki czemu w mniejszym stopniu obciążają stawy skokowe oraz kolanowe. Mogą być używane także przez osoby, u których stwierdzono urazy tych stawów, nadają się do prowadzenia rehabilitacji kręgosłupa i wzmacniania mięśni głębokich (core).
      Dzięki odpowiednio zaprojektowanym piórom płetw zwiększa się prędkość i efektywność pływania, zarówno kraulem, żabką, jak i delfinem.
      Zaletą chronionych rozwiązań jest niski koszt zaproponowanych materiałów, z których wykonane mogą być poszczególne elementy płetwy, a cały proces produkcyjny nie wymaga stosowania skomplikowanych technik przetwórczych, co obniża koszty produkcji. Dzięki temu płetwy nadają się nawet do produkcji krótkoseryjnych.
      Naukowcy zaproponowali kilka różnych materiałów, z których mogą być wykonane tak zaprojektowane płetwy. Te rozwiązania również zostały objęte ochroną patentową. Przedmiotem pierwszego patentu jest zastosowanie poliuretanu o odpowiedniej twardości, przedmiotem drugiego – wykorzystanie kevlaru bądź jego mieszanki z innymi materiałami – dla uzyskania płetw o odpowiednich mechanicznych i fizycznych właściwościach zapewniających lepszą sprawność hydrodynamiczną tych produktów.
      Chroniony design
      Zaprojektowane przez naukowców płetwy mają także oryginalny, atrakcyjny wygląd, w związku z czym wzór przemysłowy został zgłoszony dodatkowo do Urzędu Unii Europejskiej ds. Własności Intelektualnej (EUIPO). Na mocy przyznanego właśnie certyfikatu design płetw jest chroniony na terenie całej Unii Europejskiej.
      Autorami chronionych rozwiązań są: dr hab. Andrzej Swinarew, prof. UŚ i Jadwiga Gabor z Wydziału Nauk Ścisłych i Technicznych UŚ oraz dr hab. Arkadiusz Stanula, prof. AWF z Akademii Wychowania Fizycznego im. Jerzego Kukuczki w Katowicach, a także: dr hab. Andrzej Ostrowski, prof. AWF, dr hab. Tadeusz Ambroży, prof. AWF oraz doc. dr Aleksander Skaliy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Lekka silikonowa opaska może być zakładana pod kask w czasie uprawiania sportu. Wynalazek mierzy przyspieszenia działające na głowę człowieka i aktywność elektryczną kory mózgowej. Dzięki niemu od razu wiadomo, co dzieje się w mózgu, gdy dochodzi do upadku albo zderzenia.
      Nad opaską pracuje zespół naukowców z Wydziału Mechanicznego Politechniki Wrocławskiej i dwaj neurochirurdzy – z Wrocławia i Legnicy. Ich urządzenie składa się z kilkunastu czujników – akcelerometrów (mierzących przyspieszenia działające na głowę) oraz czujników pulsu, temperatury ciała, stopnia natlenienia krwi i kwasowości wydzielanego potu. Są tam także elektrody, dzięki którym możliwa jest elektroencefalografia, czyli EEG – pomiar aktywności elektrycznej kory mózgowej. Wszystkie te dane są zapisywanie na karcie pamięci, a potem przetwarzane przez komputer. Sama opaska jest wykonana z lekkiego i przyjemnego dla skóry silikonu i ma (opcjonalne) paski przechodzące przez środek głowy i wkładki douszne z czujnikami ruchu (IMU).
      Nikt do tej pory nie mierzył, co dzieje się z korą mózgową w czasie uderzenia głowy – podkreśla dr hab. inż. Mariusz Ptak z Katedry Konstrukcji Badań Maszyn i Pojazdów na Wydziale Mechanicznym, kierownik projektu. Zwykle gdy dochodzi do poważniejszego wypadku, EEG jest wykonywane kilkadziesiąt minut po takim zdarzeniu w szpitalu. My mamy szansę zobaczyć, jak zmienia się potencjał elektryczny w mózgu w czasie rzeczywistym. Przylegające do skóry elektrody są jednym z najważniejszych elementów naszej opaski. Każdy organizm jest bowiem inny i u niektórych ludzi nawet mały uraz może być przyczyną bardzo poważnych powikłań. Dlatego sam pomiar sił działających na głowę mógłby być niewystarczającym wskaźnikiem dla określenia ryzyka poważnego urazu. EEG pozwala nam bardzo dokładnie przyjrzeć się wszystkiemu, co dzieje się w głowie człowieka.
      Badania na zawodniku futbolu amerykańskiego
      Do tej pory badania na ludzkim mózgu związane z uderzeniami w czasie rzeczywistym – z oczywistych powodów – prowadzono na ciałach zmarłych.
      Nie wiemy natomiast, co dzieje się w mózgu osoby żyjącej. Wyniki mogą być zupełnie inne od tych dostępnych w literaturze, bo przecież wiele parametrów jest skrajnie odmiennych, jak choćby stopień nawodnienia organizmu – tłumaczy Johannes Wilhelm, doktorant na Wydziale Mechanicznym uczestniczący w tym projekcie. Dzięki opasce możemy dowiedzieć się np., co prowadzi do utraty świadomości człowieka. Będziemy mogli przeanalizować, jakie fale przechodzą przez mózg i jak on na nie reaguje.
      Naukowcy nie zamierzają oczywiście doprowadzać do wypadków osób zakładających zaprojektowaną i zbudowaną przez nich opaskę. Chcą przeprowadzić dużą liczbę badań, licząc na to, że przy okazji uda się zarejestrować także upadki czy zderzenia, które są nieuniknione przy aktywności fizycznej. Do udziału zaprosili więc wolontariuszy uprawiających różne dyscypliny sportu, w tym m.in. studenta naszej uczelni, który jest zawodowym graczem wrocławskiego zespołu futbolu amerykańskiego.
      Mamy już sporo danych dotyczących codziennej aktywności ludzi, np. podskakiwania czy biegania, które też są dla nas istotne, bo wiemy już, jak zachowuje się wtedy mózg i jakie naprężenia przez niego przechodzą – opowiada Marek Sawicki, doktorant na Wydziale Mechanicznym i współautor pomysłu.
      Naukowcy chcą stworzyć model pokazujący, jak rozchodzą się przyspieszenia w głowie człowieka przy konkretnym uderzeniu. Stąd potrzeba jak największej ilości danych, by model był wiarygodny.
      Chcemy zarejestrować dane od osób jeżdżących na rowerze, nartach, snowboardzie itd. Im większe zróżnicowanie, tym lepiej dla naszych badań – dodaje Johannes Wilhelm. Interesujące dla nas mogą być nawet dane z opaski osoby bawiącej się na dużym koncercie, stojącej niedaleko nagłośnienia.
      Członkowie zespołu sprawdzali wcześniej prototyp swojego wynalazku na manekinie o rozmiarach dziecka, służącym normalnie do laboratoryjnych badań zderzeniowych. Taką "lalkę" zrzucali z huśtawek i drabinek na placu zabaw, by porównywać zarejestrowane przyspieszenia.
      Przy okazji przekonaliśmy się, że zimą zabawa dziecka na placu pokrytym masą bitumiczną nie jest najlepszym pomysłem – opowiada dr hab. Ptak. Pomiary wykonywaliśmy przy temperaturze około 4 st. C. Podłoże, które normalnie służy do absorbowania części energii przy upadku, w takich warunkach jest twarde jak asfalt. Nasza opaska zarejestrowała, że na głowę manekina spadającego na podłoże z granulatu gumowego działało przyspieszenie 100 g, czyli naprawdę bardzo duże i grożące poważnymi konsekwencjami.
      W czym pomoże opaska?
      Twórcy opaski przekonują, że pozwoli ona nie tylko na dokładne prześledzenie, w jaki sposób dochodzi do uszkodzeń i dysfunkcji w mózgu w wyniku zderzeń i upadków, ale może pomóc np. w pracach nad sprzętem zabezpieczającym głowę (np. testach kasków). Naukowcy są także w kontakcie z neurobiologami z USA, zajmującymi się badaniami związanymi z poprawą pamięci poprzez oddziaływanie elektrodami na mózg. Być może opaska z Wrocławia będzie wykorzystywana również w tych badaniach.
      Mogłaby służyć także do monitorowania treningów profesjonalnych sportowców, pomagając w ocenie stanu skupienia i stresu, jakiemu te osoby są poddane w czasie przygotowań do sezonu zawodów swojej dyscypliny.
      Na razie zyskała uznanie w konkursie "Student-Wynalazca" organizowanym przez Politechnikę Świętokrzyską – nagrodzono ją wyróżnieniem w 2019 r. Opaska została też zgłoszona do tegorocznej siódmej edycji konkursu "Eureka! DGP. Odkrywamy polskie wynalazki" – jako jedno z 20 naukowych przedsięwzięć z całej Polski. Naukowcy chcą też ją opatentować – obecnie ich rozwiązanie jest na etapie zgłoszenia patentowego.
      Wynalazek jest częścią dużego projektu aHEAD  (z ang. advanced Head models for safety Enhancement And medical Development), realizowanego dzięki grantowi "Numeryczny system wielowariantowych modeli głowy człowieka do symulacji patofizjologii urazów czaszkowo-mózgowych" z programu "Lider" Narodowego Centrum Badań i Rozwoju.
      Nad opaską pracują: dr hab. inż. Mariusz Ptak (PWr), dr inż. Monika Ratajczak z Uniwersytetu Zielonogórskiego, dr inż. Fabio Fernandez z Uniwersytetu Aveiro w Portugalii, doktoranci Johannes Wilhelm, Marek Sawicki i Maciej Wnuk z Wydziału Mechanicznego PWr oraz neurochirurdzy dr Artur Kwiatkowski (Oddział Neurochirurgiczny Wojewódzkiego Specjalistycznego Szpitala w Legnicy) i Konrad Kubicki (Uniwersytecki Szpital Kliniczny we Wrocławiu – Klinika Neurochirurgii). W pracach informatycznych pomaga student W10 Oliwer Sobolewski.
      O projekcie można także przeczytać na jego stronie internetowej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Węże potrafią kontrolować każdą ze swych łusek z osobna, dzięki czemu mogą się chwytać szorstkich powierzchni i wspinać.
      Biolodzy wiedzieli o biernym mechanizmie [zachodzących na siebie łuskach o muszelkowatym kształcie], lecz o aktywnym nie mieli pojęcia - podkreśla Hamid Marvi, doktorant z Georgia Institute of Technology.
      Amerykanie znieczulali węża zbożowego i pozwalali mu się bezwładnie ześlizgiwać z rampy. Naukowcy sprawdzali, jak mocno trzeba nachylić kładkę, by zwierzę zaczęło się zsuwać. Gdy eksperyment powtarzano z przytomnym gadem, współczynnik tarcia był 2-krotnie wyższy, co sugeruje, że dzięki czuciu wąż mógł uruchomić system zapewniający mu dodatkową przyczepność.
      Kiedy analizowano zbliżenie brzucha, okazało się, że węże dobierają kąt natarcia każdej z łusek, który zapewnia najlepsze przyleganie do powierzchni.
      Odkrycia dotyczące sposobów poruszania się węży wspomogą prace nad robotami ratunkowymi. Maszyna zdatna do pracy na wszystkich typach ukształtowania terenu musi być giętka, by móc się przesuwać po nierównościach oraz nie za duża, by wciskać się w szczeliny. Przydałaby się także umiejętność wspinania. Współczesne roboty radzą sobie z częścią wymienionych zadań, ale większość "pożera" dużo energii i podlega przegrzewaniu. Wykorzystując łuski do kontroli tarcia, węże potrafią [natomiast] pokonać duże odległości na niewielkich ilościach energii.
      Podczas eksperymentów Marvi nagrał w sumie ruchy 20 gatunków węży z zoo w Atlancie. Później skonstruował Scalybota 2. Zademonstrował go w styczniu na dorocznej konferencji Stowarzyszenia Biologii Integracyjnej i Porównawczej w Charleston. Podczas ruchu prostoliniowego wąż nie musi wyginać ciała na bok, by się przesunąć. Unosi swoje brzuszne łuski i sunie do przodu, przesyłając od głowy ku ogonowi falę mięśniową. Ruch prostoliniowy jest bardzo wydajny i szczególnie przydatny podczas pokonywania szczelin, a to bezcenna umiejętność dla robotów ratowniczych.
      Scalybot 2 automatycznie zmienia kąt ustawienia łusek w zależności od rodzaju terenu i stoku. Pozwala mu to na zwalczanie albo generowanie tarcia. Czterosilnikową maszynę kontroluje się za pomocą dżojstika.
    • przez KopalniaWiedzy.pl
      Płomykówki zwyczajne (Tyto alba) polują niemal bezszelestnie. Udaje im się to, bo lecą bardzo wolno, przez co ograniczają liczbę machnięć skrzydłami. Wolny lot to zasługa specjalnej budowy i kształtu skrzydeł.
      Dr Thomas Bachmann z Uniwersytetu Technicznego w Darmstadt zbadał upierzenie tych sów oraz wykonał obrazowanie 3D ich kośćca. Wyniki swoich badań przedstawił na dorocznej konferencji Stowarzyszenia Biologii Integracyjnej i Porównawczej w Charleston.
      Płomykówki polują przeważnie w ciemności, dlatego polegają na informacjach akustycznych. Muszą latać cicho, by słyszeć przemieszczające się nornice i nie zaalarmować ofiary, że znajdują się gdzieś w pobliżu.
      Jedną z najważniejszych cech skrzydeł T. alba jest duża krzywizna. Zapewnia ona lepszą nośność. Przepływ powietrza nad górną powierzchnią skrzydła ulega przyspieszeniu, przez co spada ciśnienie. Skrzydło jest zasysane w górę, w kierunku niższego ciśnienia.
      Za sprawą delikatnej powierzchni zredukowaniu ulega hałas związany z tarciem pióra o pióro. Poza tym całe ciało sowy jest pokryte grubą warstwą piór. Płomykówka ma ich o wiele więcej niż ptak podobnej wielkości. Gęsto rozmieszczone pióra działają jak panele akustyczne, które pochłaniają wszystkie niechciane dźwięki.
    • przez KopalniaWiedzy.pl
      Skąd pingwiny cesarskie (Aptenodytes forsteri) wiedzą, ile czasu spędziły już pod wodą? Wygląda na to, że ogranicza je liczba machnięć skrzydłami, a konkretnie kumulacyjna praca mięśni. Dr Kozue Shiomi z Uniwersytetu Tokijskiego ustalił, że przed wynurzeniem ptaki wykonują średnio 237 uderzeń skrzydłami.
      Japończycy od początku przypuszczali, że pingwiny decydują, kiedy zakończyć jedzenie i wychynąć na powierzchnię, bazując na mocy zapewnianej przez mięśnie dzięki zaczerpniętemu przed nurkowaniem powietrzu.
      Kozue i inni wykorzystali dane ze swoich wcześniejszych wypraw. Przeanalizowali ponad 15 tys. pingwinich nurkowań w wykonaniu 10 swobodnie poruszających się ptaków i 3 osobników, które musiały korzystać z przerębli.
      Pomiar czasu wykazał, że wolno nurkujące pingwiny zaczynały się wynurzać po upływie nieco ponad 5 min (5,7 min). Ptaki korzystające z otworów w lodzie nurkowały często dłużej, lecz gdy w oparciu o przyspieszenie naukowcy wyliczyli liczbę uderzeń skrzydłami, okazało się, że zawsze oscylowała ona wokół "magicznych" dwustu trzydziestu siedmiu.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...