Sign in to follow this
Followers
0
Płynne tłoki dziają jak pompa i soczewka
By
KopalniaWiedzy.pl, in Technologia
-
Similar Content
-
By KopalniaWiedzy.pl
Uraz oka, np. zadrapanie rogówki, powoduje, że do soczewki "wysyłane" są komórki odpornościowe, które mają ją chronić.
By nie zaburzać widzenia, soczewka oka nie jest unaczyniona. Brak waskulatury powodował, że przez długi czas naukowcy sądzili, że komórki odpornościowe nie mają się tu jak dostać. Parę lat temu zespół z Uniwersytetu Thomasa Jeffersona wykazał jednak, że to nieprawda i że w odpowiedzi na degenerację komórki odpornościowe są rekrutowane do soczewki i pojawiają się również w rogówce, siatkówce i ciele szklistym. Prace ekipy dr Sue Menko sugerowały, że komórki odpornościowe pochodzą z ciała rzęskowego (łac. corpus ciliare), a więc części oka otaczającej tęczówkę i łączącej ją z naczyniówką.
Dr Menko dodaje, że komórki odpornościowe są kluczowe dla ochrony i naprawy. Soczewki były zawsze opisywane jako tkanka bez unaczynienia, a więc pozbawiona ich źródła. Ciało rzęskowe jest [zaś] dobrze unaczynione, dlatego corpus ciliare wydawało się najbardziej oczywistym miejscem do zbadania [pod tym kątem].
W ramach najnowszych badań na myszach Amerykanie wykazali, że po urazie rogówki komórki odpornościowe migrują z ciała rzęskowego wzdłuż włókien więzadełek rzęskowych, czyli pasm więzadłowych rozpiętych w tylnej komorze oka (utrzymują one soczewkę w jej położeniu). By to ustalić, akademicy posłużyli się fluorescencyjnymi znacznikami i mikroskopią. Wszystko wskazuje więc na to, że po urazie rogówki układ odpornościowy wdraża reakcję, która ma ochronić soczewkę.
Podstawową część ciała rzęskowego tworzy mięsień rzęskowy, który kurcząc się lub rozkurczając, wywołuje, odpowiednio, spadek napięcia lub napięcie więzadełek, co przenosi się na soczewkę. To podstawowa funkcja ciała rzęskowego, ale jak podkreślają Amerykanie, proteom więzadełek obejmuje liczne białka macierzy pozakomórkowej i białka sygnalizacyjne, które mogą stwarzać środowisko sprzyjające migracji komórek. Jednym z nich jest glikoproteina towarzysząca mikrofibrylom (ang. microfibril‐associated protein‐1, MAGP-1).
To pierwsza prezentacja obserwacji soczewki, przeprowadzanej przez komórki odpornościowe w odpowiedzi na uraz występujący w jakiejś części gałki ocznej.
Autorzy publikacji z The FASEB Journal wykazali, że niektóre komórki odpornościowe pokonują torebkę soczewki. Wg akademików, może to wskazywać na rolę komórek immunologicznych w powstawaniu zaćmy.
« powrót do artykułu -
By KopalniaWiedzy.pl
W laboratoriach IBM-a w Zurichu trwają prace nad układem scalonym, który wykorzystuje płyn do pracy oraz chłodzenia. Ludzki mózg jest 10 000 razy gęściej upakowany i wydajny niż jakikolwiek współczesny komputer. Jest to możliwe dzięki temu, iż wykorzystuje jedną, niezwykle efektywną, sieć połączeń kapilarnych i krwionośnych, które jednocześnie odbierają ciepło i transportują energię - mówi Bruno Michel, który kieruje pracami zespołu badawczego.
Jeśli IBM-owi uda się osiągnąć założony cel to pewnego dnia takie maszyny jak superkomputer Watson uda się zamknąć w kieszonkowym urządzeniu przenośnym.
Michel i jego zespół chcą zbudować trójwymiarowy układ scalony składający się z tysięcy kości ułożonych jedna na drugiej. Pomiędzy każdymi dwoma kośćmi ma znaleźć się para struktur wypełnionych płynem. Jedna z tych sieci będzie zawierała naładowany płyn, zapewniający układowi zasilanie, druga zaś będzie odpowiedzialna za odprowadzanie tego płynu gdy już przekaże on swój ładunek i odbierze ciepło z układu.
Wykorzystanie płynów do chłodzenia układów 3D nie jest niczym nowym. Niezwykłym pomysłem badaczy z IBM-a jest użycie tego samego płynu do zasilania układów.
Do zwiększenia wydajności maszyn HPC (high performance computing) koniecznie jest umieszczanie układów bliżej siebie. Ale zasilanie ich za pomocą płynu to niebadany dotychczas obszar. Nie wykracza to całkowicie poza wyobraźnię. Nie widzę powodów, dla których nie miałoby to działać, ale nikt nigdy czegoś takiego nie próbował - mówi Mark Zwolinski z University of Southampton.
Superkomputer Watson wymaga do pracy 85 kilowatów i jest 10-krotnie większy od dużej lodówki. Michel uważa, że wykorzystanie płynu do chłodzenia i zasilania pozwoli na znaczące zredukowanie poboru mocy i zmniejszenie wielkości urządzenia.
Uczeni z IBM-a chcą pokazać prototyp swojego układu już w 2014 roku. Jeśli im się to uda, Watson zagości w naszych kieszeniach.
-
By KopalniaWiedzy.pl
Posługując się urządzeniem mikrostrumieniowym, prof. Roger Kamm, William Polacheck i Joseph Charest z MIT-u wykazali, że kierunek przepływu płynów przez tkanki określa prawdopodobieństwo rozprzestrzeniania się nowotworu. Wiedząc to, w przyszłości lekarze będą mogli i zmniejszyć ryzyko powstawania przerzutów.
Naukowcy chwalą się, że niemal tak samo ważny, jak ich odkrycia jest stworzony na potrzeby eksperymentu trójwymiarowy system mikrostrumieniowy. Podczas gdy wcześniejsze badania bazowały na wizualizowaniu pojedynczych komórek w sztucznym środowisku pozakomórkowym, urządzenie zespołu z MIT-u pozwala stwierdzić, jak komórki oddziałują z tkanką, która naśladuje naturalną tkankę piersi.
Na rynku nie ma obecnie ani jednego leku, który działałby w oparciu o to, jak komórki nowotworowe odrywają się od pierwotnego guza, dostają się do układu krążenia, migrują i tworzą wtórny guz. Takie właśnie procesy możemy symulować w naszym systemie mikrostrumieniowym – podkreśla Kamm.
Zaczynając badania, Amerykanie wiedzieli, że wskutek ciągłego wzrostu guz prowadzi do wytworzenia wysokiego ciśnienia cieczy w otaczających tkankach. To z kolei skutkuje odpływem cieczy z samego guza. Melody Swartz, która kiedyś współpracowała z Kammem, a później przeniosła się do École Polytechnique Fédérale de Lausanne, odkryła, że wskutek tego odpływu ligandy wydzielane przez guz wybiórczo wiążą się z receptorami w części komórki znajdującej się przy głównym nurcie. Dochodzi do wytworzenia asymetrii, co ostatecznie sprawia, że komórki zaczynają migrować z nurtem. Gdyby na tym wszystko się kończyło, perspektywy byłyby niezbyt zachęcające. Oznaczałoby to bowiem, że komórki nowotworowe szybko dostaną się do układu krążenia. Polacheck i Kamm zauważyli jednak, że zjawiska zaobserwowane przez Swartz to tylko jedna strona medalu.
Ich urządzenie składa się dwóch kanałów, oddzielonych od siebie warstwą żelu z pojedynczymi komórkami, czyli macierzą, w której zachodzi przepływ cieczy. Podczas eksperymentów z komórkami raka sutka zespół zauważył, że komórki nowotworowe poruszają się pod prąd. Na początku zaczęto kwestionować spostrzeżenia Swartz, ale później okazało się, że w grę wchodzą dwa konkurujące ze sobą mechanizmy. Jednym z nich jest autologiczna chemotaksja dodatnia, która zachodzi przy niskim zagęszczeniu komórek lub pod wpływem aktywacji receptora CCR7 (receptora chemokin z podrodziny C-C typu 7.). Chemotaksja prowadzi do migracji z prądem, gdyż stężenie ligandów jest wyższe po stronie komórki przy głównym nurcie. Drugi mechanizm działa przy dużym zagęszczeniu komórek, np. wokół rosnącego guza, albo wtedy, gdy receptor CCR7 jest zablokowany. Włącza się on, kiedy płyn przepływający obok komórki aktywuje receptory integrynowe. Wskutek tego rozpoczyna się migracja pod prąd.
Firmy farmaceutyczne mogą wykorzystać te informacje, by skupić się na stworzeniu leków blokujących receptory CCR7, co zapobiegłoby migracji w stronę układu krwionośnego i prowadziłoby do uwięzienia guza.
-
By KopalniaWiedzy.pl
Nawet w starszym wieku ponawiana wielokrotnie regeneracja nie zmniejsza zdolności traszek do regeneracji tkanek. Doniesienia zespołu prof. Panagiotisa Tsonisa z University of Dayton przeczą więc podtrzymywanym od 250 lat teoriom, zgodnie z którymi wiek i liczne amputacje niekorzystnie wpływają na regenerację.
W ciągu 16 lat Tsonis osiemnaście razy usunął soczewki z oczu sześciu traszek japońskich (Cynops pyrrhogaster). Zawsze dochodziło do regeneracji, lecz nie z pozostałej tkanki soczewki, ale z komórek nabłonka barwnikowego górnej części tęczówki. Pod koniec studium w 2010 r. traszki osiągnęły sędziwy wiek co najmniej 30 lat. Choć długość ich życia była kilkakrotnie dłuższa niż w przypadku płazów hodowanych w terrariach, soczewki utworzone po dwóch ostatnich amputacjach były nieodróżnialne od soczewek 14-letnich osobników, które nigdy nie musiały regenerować tej części oka. Co ważne, ekspresja genów kluczowych dla regeneracji (czyli np. genu krystaliny – białka wypełniającego cytoplazmę komórek soczewki – oraz genów regulatorowych) była w obu przypadkach podobna. Nie odnotowano znaczących różnic w tempie różnicowania i wzrostu regenerowanych soczewek.
Tsonis uważa, że dokładne zrozumienie zdolności regeneracyjnych traszek pozwoli kiedyś wykorzystać ten proces w leczeniu ludzi. Na razie przed nami długa droga, nim będziemy mogli odnieść to do ludzi, ale traszka stanowi doskonałe źródło odpowiedzi na pytania dotyczące regeneracji, zwłaszcza w starszym wieku. W przyszłości Amerykanie i współpracujący z nimi Japończycy zamierzają porównać możliwości regeneracyjne młodych i starych traszek. Chcą sprawdzić, jak zmienia się mechanizm regenerowania i czy wykorzystywane są np. różne komórki. Inne studium mogłoby też dotyczyć kwestii, co dzieje się z telomerami traszek (telomery zabezpieczają chromosomy przed uszkodzeniami podczas kopiowania; po każdym podziale komórki stają się coraz krótsze).
W 1994 r. opisywane studium zainicjował mentor Tsonisa Japończyk Goro Eguchi. Sześć lat temu Tsonis i jego żona doprowadzili do przełomu w regeneracji (oczywiście u traszek). Zazwyczaj po urazie grzbietowa część tęczówki może odtworzyć zniszczoną soczewkę, ale brzuszna nie. W części grzbietowej i brzusznej występują te same komórki i po usunięciu soczewki wykazują one tę samą aktywność, ale z nieznanych powodów część brzuszna "wyhamowuje" przed rozpoczęciem regeneracji. Okazało się jednak, że wystarczy dodać mieszaninę określonych czynników wzrostu, by brzuszna część tęczówki również odtworzyła soczewkę.
W 2009 r. Tsonis stwierdził, że proces regeneracji u traszek przypomina tworzenie indukowanych pluripotencjalnych komórek macierzystych (ang. induced pluripotent stem cells, iPSC). Reprogramowanie tych ostatnich polega na aktywowaniu w komórkach 4 normalnie uśpionych czynników. To skłoniło naukowca do sporządzenia mapy wszystkich genów, do których ekspresji dochodzi w czasie regeneracji (chodziło o transkryptom, czyli cząsteczek mRNA obecnych w danym momencie w komórce lub grupie komórek).
-
By KopalniaWiedzy.pl
Testy wykazały, że arktyczne renifery reagują na bodźce świetlne z zakresu ultrafioletu. Biolodzy uważają, że ta niezwykła umiejętność pozwala im znajdować pokarm i unikać drapieżników w specyficznej atmosferze Arktyki, gdzie promieniowania UV nie brakuje, a widoczność często bywa bardzo ograniczona (Journal of Experimental Biology).
Naukowcom po raz pierwszy przeszło przez myśl, że renifery mogą widzieć ultrafiolet, kiedy ustalono, że promienie UV przechodzą przez soczewkę i rogówkę zwierzęcia. Podczas eksperymentów przepuszczano światło przez próbki tkanek. Okazało się, że oko renifera radzi sobie ze światłem o minimalnej długości fali ok. 350 nanometrów. Wyposażeni w tę wiedzę brytyjscy akademicy postanowili sprawdzić, czy u znieczulonego renifera wystąpi reakcja elektryczna siatkówki na promienie UV (gdyby wystąpiła, oznaczłoby to, że ssak widzi ultrafiolet).
Posłużyliśmy się ERG (elektroretinografią), dzięki której umieszczając na wewnętrznej stronie powieki niewielki kawałek złotej folii, utrwaliliśmy elektryczną reakcję siatkówki na światło - wyjaśnia prof. Glen Jeffery z Uniwersyteckiego College'u Londyńskiego. W ten sposób udowodniono, że czopki, światłoczułe receptory siatkówki oka, rzeczywiście reagują na UV.
Renifery żywią się porostami. Ponieważ organizmy te pochłaniają ultrafiolet, pasącym się zwierzętom mogą się one wydawać czarne. Dzięki tej samej umiejętności wilki, których futra także absorbują promienie UV, jawią się na tle śniegu jako ciemniejsze. Biolodzy podkreślają, że na tym nie koniec korzyści, bo w ramach widzenia UV i mocz staje się bardziej widoczny, co pozwala stwierdzić, że w pobliżu znajduje się inny renifer lub drapieżnik. Wszystko wskazuje na to, że widząc ultrafiolet, renifery nie doświadczają żadnego uszerbku na zdrowiu, nie cierpią np. na typową dla ludzi ślepotę śnieżną (jest to oparzenie siatkówki w okolicach plamki żółtej, wywołane promieniami światła widzialnego oraz światłem ultrafioletowym).
W niedalekiej przyszłości ten sam zespół chce przeprowadzić testy na fokach. Prof. Jeffery sądzi bowiem, że wiele arktycznych zwierząt widzi ultrafiolet. W końcu nie ma dowodów na to, że niedźwiedzie polarne muszą się zmagać ze skutkami ślepoty śnieżnej...
-
-
Recently Browsing 0 members
No registered users viewing this page.