Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Coraz mniej jeździmy

Recommended Posts

Niewykluczone, że dotychczasowe szacunki dotyczące wzrostu emisji dwutlenku węgla i innych pochodnych spalania ropy naftowej trzeba będzie skorygować w dół. Najnowsze badania wykazały bowiem, że ludzie - przynajmniej w krajach rozwiniętych - coraz rzadziej podróżują.

Od lat 70. ubiegłego wieku w krajach rozwiniętych notowany jest ciągły wzrost liczby kilometrów przebytych samochodem i samolotem przez przeciętnego obywatela. Dotychczas przewidywano, że przez najbliższe kilkadziesiąt lat tych kilometrów będzie przybywało.

Tymczasem Lee Schipper z University of California, Berkeley i Stanford University oraz Adam Millard-Ball ze Stanford University twierdzą, że od kilku lat podróżujemy liczba kilometrów nie rośnie.

Obaj uczeni przeanalizowali dane z lat 1970-2008 z USA, Kanady, Wielkiej Brytanii, Australii, Francji, Szwecji, Niemiec i Japonii. Dla każdego z tych krajów sprawdzili liczbę kilometrów na obywatela, które przebyły samochody osobowe, ciężarówki, pociągi, tramwaje, metro i samoloty. Dane takie porównali z produktem krajowym brutto na mieszkańca.

Okazalo się, że pomiędzy latami 1970-2003 istniała ścisła korelacja pomiędzy rosnącą liczbą przebytych kilometrów, a rosnącym PKB na głowę. Nagle, po roku 2003, doszło do zmiany trendu. PKB na głowę mieszkańca nadal się zwiększa, ale liczba przebytych kilometrów ustabilizowała się. Rok 2003 był rokiem największego ruchu. Wówczas w USA PKB na głowę wynosiło 37 000 dolarów, a w pozostałych wspomnianych krajach wahało się od 25 do 30 tysięcy dolarów na głowę. Wówczas też średnia liczba przebytych kilometrów na pojedynczą osobę ustabilizowała się np. w USA na poziomie 26 000 na osobę rocznie, w Japonii na 10 000 km/osoba/rok, a w pozostałych krajach jest to od 13 do 17 tysięcy kilometrów rocznie na osobę.

"Od roku 2003 liczba kilometrów przejechanych pojazdami mechanicznymi ustabilizowała się lub nawet spadła w większości badanych krajów, liczba podróży prywatnymi pojazdami spadła. Ludzie nadal kupują coraz więcej samochodów, ale przejeżdżają one mniej kilometrów" - napisali autorzy raportu.

Uczeni spekulują, że jedną z przyczyn takiego stanu rzeczy jest nasycenie liczba posiadanych pojazdów. W USA na 1000 osób jest 700 prywatnych samochodów, czyli więcej niż osób posiadających prawo jazdy. W pozostałych krajach liczba ta wynosi około 500 na 1000 osób. Od roku 2007 z powodu recesji Amerykanie kupują też mniej samochodów. Kolejne czynniki to fakt, że w podróży spędzamy codziennie około 66 minut, a jednocześnie limity prędkości na drogach pozostają niezmienione, zatem liczba przejechanych kilometrów nie rośnie. Ponadto bogate społeczeństwa starzeją się, są więc mniej mobilne. Rosną też ceny paliw, co zniechęca do podróży.

Jednak, jak uważają uczeni, najważniejszą przyczyną ustabilizowania się liczby przejechanych kilometrów są... korki. W większości dużych miast na świecie poruszanie się samochodami jest bardzo utrudnione, gdyż na drogach po prostu brakuje miejsca.

Pozytywnym rezultatem ustabilizowania się liczby przejechanych kilometrów będzie zmniejszające się zanieczyszczenie środowiska. Pojazdy są bowiem coraz bardziej ekonomiczne. W USA przeciętny samochód spala na 100 kilometrów o około 30% mniej paliwa niż w roku 1973, pomimo tego, że w międzyczasie bogacący się Amerykanie kupowali coraz większe pojazdy.

Share this post


Link to post
Share on other sites

Sądzę, że swój udział w tym miał rozwój telekomunikacji, a konkretnie internetu. W wielu wypadkach sieć może zastąpić osobistą obecność.

Share this post


Link to post
Share on other sites

Mamy też większe lodówki więc rzadziej jeździmy na zakupy. W związku z tym większe brzuchy, no to jesteśmy leniwsi i mniej mobilni. A ci co nie mają nadwagi, a może dlatego, to korzystają z rowerów lub chodzą pieszo.

A jeśli jesteśmy coraz bogatsi to dlaczego mamy czas marnować spędzając go w samochodzie?

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Gdy piorun uderzy w samolot, pilot powinien jak najszybciej wylądować, by można było sprawdzić ewentualne uszkodzenia maszyny. Na pierwszym planie jest tutaj stawiane bezpieczeństwo, jednak bardzo często maszyna wychodzi z takiego zdarzenia bez szwanku, a cała procedura powoduje spore koszty i opóźnienia.
      Najnowsze badania sugerują, że najlepszym sposobem na zmniejszenie ryzyka uderzenia pioruna w samolot może być... dodanie ładunku elektrycznego na jego powierzchni.
      Podczas lotu na powierzchni samolotu gromadzą się dodanio lub ujemnie naładowane jony. Szczególnie dużo gromadzi się ich na dziobie, końcówkach skrzydeł i statecznika. Jeśli pojawi się duża różnica w ładunkach zanim samolot wleci w naładowany obszar atmosfery, jony mogą przepłynąć wzdłuż poczycia i zamknąć obwód z chmurami prowadząc do pojawienia się wyładowania.
      W 2018 roku inżynier Carmen Guerra-Garcia z MIT i jej sudent Colin Pavan, przeprowadzili obliczenia, z których wynikało, że aby zapobiec takim wydarzeniom należy dodać do poszycia samolotu ujemne ładunki elektryczne. Teraz oboje przetestowali model samolotu z umieszczonym na pokładzie generatorem. Badali swój model w różnych warunkach, sprawdzając, jak rozkładają się ładunki elektryczne i co się z nimi dzieje.
      Badania potwierdziły, że przepływ jonów prowadzi do zainicjowania wyładowań elektrycznych. Potwierdziły też, że dodanie ujemnych ładunków pomaga w uniknięciu takich zjawisk.
      Naładowanie samolotu brzmi jak pomysł szaleńca, ale dodanie ładunków ujemnych zapobiega gromadzeniu się ładunków dodatnich, co z kolei może zapobiec pojawieniu się wyładowania, mówi inżynier Pavlo Kochkin z Uniwersytetu w Bergen. Od lat zajmuje się on problematyką wyładowań elektrycznych na powierzchni samolotów. Teraz, zainspirowany badaniami naukowców z MIT, tworzy specjalny symulator, w którym uwzględni różne poziomy naelektryzowania powietrza i zawartość pary wodnej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      BAE Systems wyprodukowało bezzałogowy ultralekki samolot (UAV), który może konkurować z satelitami czy dronami. PHASA-35 (Persistent High-Altitude Solar Aircraft) może pochwalić się skrzydłami o rozpiętości 35 metrów, a więc dorównującej rozpiętości skrzydeł Boeinga, ale waży przy tym 150 kg, w tym 15 kg stanowi ładunek. Samolot został po raz pierwszy oblatany 10 lutego na poligonie australijskich sił powietrznych Woomera.
      Latał przez nieco mniej niż godzinę. To jednak wystarczyło do przetestowania jego aerodynamiki, autopilota i manewrowości. Wcześniej testowaliśmy te elementy na mniejszych modelach samolotu, więc większość problemów już poprawiliśmy,mówi Phil Varty z BAE Systems.
      Prototyp pokryty jest ogniwami fotowoltaicznymi firmy MicroLink Devices. Ich producent twierdzi, że skuteczność konwersji paneli sięga 31%.
      Na potrzeby testu tylko część skrzydeł pokryliśmy panelami. Urządzenia te o grubości kartki papieru generowały 4 kW. W ostatecznej wersji samolotu panele umieścimy na całej powierzchni skrzydeł i dostarczą one 12 kW, zapewnia Varty.
      Energia słoneczna napędza dwa silniki elektryczne i zasila zestaw ponad 400 akumulatorów, które pozwalają samolotowi na lot w nocy. Jak mówi Varty, akumulatory – w przeciwieństwie do paneli słonecznych – nie są ostatnim krzykiem techniki. Firma postawiła na znane, niezbyt wydajne i tanie rozwiązanie, podobne do tego, jakie możemy spotkać w smartfonach. Chodzi o to, żeby łatwo można było wymienić akumulatory na nowe, gdy pojawi się lepsza sprawdzona wersja.
      Przedstawiciele BAE Systems zauważają też, że pomimo tego, iż test samolotu był prowadzony latem w Australii, to pojazd zaprojektowano tak, by mógł latać podczas najmniej sprzyjającej pory roku – przesilenia zimowego. Dlatego też PHASA-35 może potencjalnie pozostawać w powietrzu nieprzerwanie przez cały rok. Będzie latał w stratosferze na wysokości około 20 kilometrów. Tam jest niewiele wiatru, nie chmur i turbulencji, mówi Varty.
      Samolot może być sterowany z Ziemi. Jest też wyposażony w autopilota, któremu można wgrać wcześniej przygotowaną trasę. Urządzenie może pozostawać w określonym punkcie lub wykonywać złożone manewry. Można go wyposażyć w aparaty fotograficzne, czujniki i różnego rodzaju urządzenia śledzące. Dlatego też PHASA-35 w wielu zastosowaniach może zastąpić drony czy satelity.
      Najlepsze wojskowe drony mogą pozostawać w powietrzu maksymalnie przez 3 doby. Z kolei satelity muszą utrzymać prędkość co najmniej 7 km/s, by pozostać na wyznaczonej orbicie. Samolot BAE Systems będzie mógł bez przerwy monitorować określone miejsce, a dzięki temu, że znajduje się niżej nad Ziemią, dostarczy dokładniejszych obrazów. Jednak jego przydatność i czas pozostawania w powietrzu będą w dużej mierze zależały od masy ładunku. Osobną kwestią jest odporność na awarie przez cały rok.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Parkując samochód na zewnątrz, zwłaszcza w okolicy, gdzie występują wiewiórki, warto od czasu do czasu zapobiegawczo zajrzeć pod maskę. Przekonała się o tym Holly Persic z Pensylwanii, która wybrawszy się autem do biblioteki, poczuła swąd spalenizny i miała wrażenie, że SUV wydaje dziwne dźwięki. Kobieta zadzwoniła do męża, który poradził jej, by zajrzała pod maskę. Okazało się, że w środku znajduje się cała masa orzechów czarnych i trawy - jednym słowem, wiewiórcze zapasy na zimę.
      Wyjęcie ponad 200 orzechów zajęło prawie godzinę. Później małżonkowie pojechali do warsztatu. Tam po rozmontowaniu podwozia udało się wyjąć resztę orzechów (dobre pół wiaderka). Te, które leżały na bloku cylindrów, były czarne i miały charakterystyczną woń spalenizny - opowiada Chris Persic. Na szczęście nie doszło do jakichś poważniejszych uszkodzeń.
      Skarb spod maski wyjaśnił, co się stało z orzechami, które spadły z dużego drzewa. Na ziemi nie pozostało ich za dużo, a Chris zachodził ostatnio w głowę, gdzie się podziały...

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wszystkie samoloty, od początku istnienia tych maszyn, poruszają się dzięki pomocy ruchomych części, takich jak śmigła czy turbiny. Inżynierowie z MIT skonstruowali pierwszy w historii samolot, który nie zawiera żadnych ruchomych części. Jest on zasilany przez „wiatr jonowy” wytwarzany na pokładzie samolotu, który zapewnia mu wystarczający ciąg, by utrzymać maszynę w powietrzu. W przeciwieństwie do innych rozwiązań stosowanych w lotnictwie, nowy napęd jest całkowicie cichy i nie potrzebuje paliw kopalnych.
      To pierwszy zdolny do lotu samolot z napędem niezawierającym ruchomych części. Potencjalnie może to doprowadzić do powstania samolotów, które są cichsze, prostsze w konstrukcji i nie powodują emisji pochodzącej ze spalania, cieszy się profesor Steven Barrett z MIT. Uczony uważa, że w najbliższej przyszłości mogą pojawić się ciche drony korzystające z wiatru jonowego. W dalszej zaś perspektywie uczony przewiduje pojawienie się samolotów pasażerskich i transportowych o napędzie hybrydowym, łączącym wiatr jonowy z tradycyjnym silnikiem.
      Barrett przyznaje, że do pracy nad nowatorskim napędem zainspirował go serial Star Trek, który namiętnie oglądał w dzieciństwie. Szczególnie fascynowały go pojazdy latające, które bez wysiłku poruszały się w atmosferze, nie były wyposażone w żadne śmigła, nie wydzielały spalin i nie hałasowały. Pomyślałem, że w przyszłości powstaną samoloty, które nie będą miały śmigiel i turbin. Będą jak statki w Star Treku, które świecą na niebiesko i cicho się poruszają, wspomina Barrett.
      Przed dziewięciu laty naukowiec rozpoczął prace nad systemem napędowym bez ruchomych części. Szybko zwrócił uwagę na wiatr jonowy, czyli ciąg elektroaerodynamiczny. Jego koncepcję opracowano w latach 20. ubiegłego wieku. Mówi ona, że jeśli pomiędzy dwiema elektrodami, cienką i grubą, pojawi się wystarczające napięcie, to powietrze przepływające pomiędzy elektrodami wytworzy tyle ciągu, że będzie w stanie napędzać mały samolot. Przez lata koncepcją taką zajmowali się głównie hobbyści, którym udawało się stworzyć bardzo małe samoloty, podłączone do źródła napięcia, które przez chwilę unosiły się w powietrzu. Uzyskanie dłuższego lotu większym urządzeniem uznawano za niemożliwe.
      Jednak Barrettowi się udało. Skonstruowany przez niego i jego zespół samolot waży około 2,5 kilogramów i ma skrzydła o rozpiętości 5 metrów. Pod skrzydłem, wzdłuż jego przedniej krawędzi, znajdują się cienkie struny, przypominające ułożeniem płot otaczający pastwisko. Wzdłuż tylnej krawędzi również mamy struny, ale grubsze. Te pierwsze działają jak katoda (elektroda dodatnia), a drugie jak anoda. W kadłubie pojazdu umieszczono akumulatory litowo-jonowe, które dostarczają one napięcie rzędu 40 000 woltów do katody. Naelektryzowane struny z przodu wyrywają elektrony z otaczających je molekuł powietrza, a zjonizowane w ten sposób powietrze przepływa w kierunku strun z tyłu. Każdy z przepływających jonów miliony razy zderzał się z molekułami powietrza, tworząc w ten sposób ciąg.
      Twórcy samolotu testowali go w sali o długości 60 metrów. Pojazd przemierzał całą długość sali. Przeprowadzono 10 testów i za każdym razem stwierdzono, że napęd działa. To był najprostszy możliwy projekt. Daleka jeszcze droga do stworzenia samolotu, zdolnego do wykonania użytecznej misji. Musi być on bardziej wydajny, lecieć dłużej i być zdolnym do lotu na otwartej przestrzeni, dodaje Barrett.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Grupa naukowa z Kolonii i Nowego Jorku zaprezentowała oryginalną koncepcję poradzenia sobie z korkami na drogach. Ich problem mógłby zostać rozwiązany, zdaniem naukowców, za pomocą dynamicznie zmieniających się opłat drogowych.
      Peter Cramton i Axel Ockenfels z Uniwersytetu w Kolonii oraz Richard Geddes z Cornell University opisują, w jaki sposób kierowcy płaciliby zmienną stawkę za korzystanie z dróg. Stawka taka byłaby dostosowywana w czasie rzeczywistym do liczby samochodów na drodze oraz do ich typu i ilości emitowanych spalin. Dzięki niej, jak wierzą naukowcy, nie tylko zmniejszyłyby się korki, ale również redukcji uległoby zanieczyszczenie środowiska.
      Szacuje się, że w ubiegłym roku straty gospodarcze spowodowane korkami drogowymi wyniosły w Niemczech 80 miliardów dolarów. Obecnie ci użytkownicy dróg, którzy przyczyniają się do korków, większego zanieczyszczenia środowiska i innych kosztów, płacą tyle samo co ci, którzy takich zjawisk nie wywołują. Bez odpowiednich opłat oznacza to, że społeczeństwo dopłaca do takich kierowców. A to nie jest uczciwe, mówi Ockenfels. Jeśli opłata drogowa będzie dostosowywana do warunków, na przykład w czasie godzin szczytu będzie wyższa niż poza nimi, każdy wybierze tę porę podróży, która mu najbardziej pasuje. To już działa w przypadku systemów nawigacji. To zmniejszy korki na drogach, usprawni ruch i zmniejszy emisję dwutlenku węgla, dodaje Cramton.
      Z technicznego punktu widzenia tego typu system mógłby powstać już dzisiaj. Naukowcy nie obawiają się, że uderzyłby on w uboższych użytkowników dróg. Ceny musiałyby być dynamicznie zmieniane, a kierowca musiałby mieć wybór. Wyobraźmy sobie, że pobieramy opłatę tylko za poruszanie się lewym, zwykle bardzo obleganym, pasem wielopasmowej drogi. Wówczas zwiększy się ruch na prawym pasie. Wszyscy na tym skorzystają, stwierdza Ockenfels.

      « powrót do artykułu
×
×
  • Create New...