Jump to content
Forum Kopalni Wiedzy
  • ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Content

    • By KopalniaWiedzy.pl
      Nasza wiedza o wszechświecie się poszerza, dzięki nowym technologiom możemy zajrzeć dalej. Od niedawna dopiero udaje się obserwować planety o rozmiarze zbliżonym do Ziemi, a już dostajemy nowe zagadki. Teleskop Spitzera odnalazł ziemiopodobną planetę z atmosferą zaledwie 33 lata świetlne od nas. Problem w tym, że nie wygląda ona tak, jak według dotychczasowych teorii powinna. Według określeń samych astronomów, nie „smakuje" jak myśleliśmy, bo... nie zawiera metanu.
      Odkryta planeta, wielkości naszego Neptuna, otrzymała nazwę GJ 436b. Obiega ona niewielką, chłodną gwiazdę w konstelacji Lwa, rok na niej trwa niecałe trzy nasze dni. To najmniejsza dotąd odkryta planeta „posmakowana" teleskopem, więc zrozumiała jest radość astronomów: oznacza to, że przy użyciu większego teleskopu niż Spitzer będzie można badać jeszcze mniejsze planety i analizować ich skład chemiczny. Radość zamieniła się jednak w zmieszanie, kiedy okazało się, że nowy glob nie pasuje do teorii, wg której jego atmosfera powinna zawierać duże ilości metanu.
      Dlaczego astronomowie spodziewają się właśnie metanu? Metan w ziemskiej atmosferze powszechnie wytwarzany jest przez organizmy żywe, począwszy od bakterii, aż po ssaki. Jednak metan na nowo odkrytej planetce oczekiwany był dlatego, że tak podpowiada znana nam chemia. Większość znanych planet i innych obiektów, wliczając również „brązowe karły", czyli nieudane gwiazdy, zawiera duże ilości metanu. Metan znajdowany jest w każdym obiekcie o temperaturze nie większej niż tysiąc Kelvinów (około 730° Celsjusza). Tak przynajmniej było do tej pory.
      Atmosfera GJ 436b powinna zawierać w większości metan oraz niewielkie ilości tlenku węgla. To po prostu typowe związki węgla, jakie się normalnie tworzą w takich temperaturach. Analiza spektrum światła pokazała obecność tlenku węgla, ale ani śladu metanu! Teoretycy otrzymali w ten sposób nielichą zagadkę. Dotychczasowe teorie trzeba będzie niestety tworzyć na nowo. Na razie bezradnie drapiemy się po głowach - przyznają badacze. - Ale mamy przynajmniej świadomość, że nasze teoretyczne modele planet wymagają zdecydowanych poprawek. Zaczynamy jednak wreszcie dostawać rzeczywiste dane z odległych obiektów, to pozwoli nam zrozumieć, co się dzieje z ich atmosferami.
      GJ 436b odkryto analizując sposób, w jaki zakłóca ona docierające do nas światło swojej gwiazdy. Przy każdym obiegu raz planeta przechodzi przed tarczą słoneczną, raz się za nią chowa. Pozwala to określić jej rozmiary i skład chemiczny. Do tej pory w ten sposób odkrywano jedynie planety olbrzymy, o rozmiarach podobnych do naszego Jowisza. Udoskonalenie tej techniki pozwoli teraz na odkrywanie planet podobnych do Ziemi, na których może znajdować się życie. Dlatego zrozumienie, jak ewoluuje skład atmosfery i jak powstają i utrzymują się składniki pozwalające rozwijać się życiu - woda, tlen, węgiel - są takie ważne. Spitzer jest już nienowym teleskopem, który zakończył swoją podstawową misję, kiedy w 2009 roku skończyły mu się zapasy substancji chłodzącej aparaturę. Od tego czasu używany jest jedynie do rejestrowania obiektów w podczerwieni - w ten właśnie sposób odkrył on tę zaskakującą planetę.
    • By KopalniaWiedzy.pl
      Człowiek od zawsze obserwował niebo. Od czasów Galileusza, twórcy pierwszego teleskopu, nasze obserwacje Kosmosu stają się coraz dokładniejsze i doskonalsze technicznie. Jednego jednak do tej pory nie można było zmienić: oglądaliśmy Wszechświat zawsze z tej samej perspektywy. Rozejrzenie się z innego punktu wszechświata jest - wydawałoby się - przecież niemożliwe. A jednak.

      Astronomowie z Harvard-Smithsonian Center for Astrophysics (CfA) postanowili wypróbować nową technikę obserwacji. Wzięli na celownik słynną supernową Kasjopeja A, która pojawiła się na naszym niebie 330 lat temu (eksplodowała oczywiście znacznie wcześniej, bo około 11 tysięcy lat temu). Jej mające średnicę 20 lat świetlnych pozostałości trudno dostrzec okiem choć są najsilniejszym radioźródłem na niebie. To właśnie dzięki wyjątkowo silnemu promieniowaniu stała się doskonałym kandydatem do eksperymentu. Otóż zamiast obserwować jedynie jej bezpośrednie promieniowanie, jak to robiono od wieków, postanowiono rejestrować promieniowanie odbite od innych obiektów astronomicznych, jakie również do nas dociera.

      Autorzy pomysłu porównują to do rejestracji dźwięku w jaskini. Kiedy ktoś krzyknie w niej „echo!", słyszymy nie tylko jego własny głos, ale po chwili docierają do nas kolejne odbicia od ścian, sufitu, podłogi. Podobny fenomen postanowili wykorzystać do obserwacji Kasjopei A. Z powodzeniem. Analiza odbitych fal pozwoliła nie tylko „zobaczyć" ją z innych kierunków - jak gdyby ze strony obiektów, które odbijają jej promieniowanie - ale także dowiedzieć się, jak wyglądała wiele lat temu. Dzięki temu można było dowiedzieć się, w jaki sposób się rozprzestrzeniała. Złożenie zaś jej widoku z wielu stron pozwoliło na zrekonstruowanie trójwymiarowego, wirtualnego modelu. Jego wizualizację można zobaczyć w internecie, naprawdę zapierający dech w piersiach widok. Wykorzystano przy tym dane z rentgenowskiego teleskopu Chandra, obserwacji w podczerwieni dostarczył Spitzer, wykorzystano też dane optyczne z teleskopu NOAO w Kitt Peak oraz teleskopu MIT w Michigan-Dartmouth.

      I nie jest to tylko zabawa. Dzięki tym badaniom okazało się, że eksplozja supernowej wcale nie jest jednorodna. Nie jest to - według porównania samych autorów - fajerwerk wybuchający równo we wszystkich kierunkach. Supernowa - jak podejrzewano - może eksplodować znacznie silnej w jednym kierunku. Taki właśnie kierunkowy wybuch miał miejsce w przypadku Kasjopei A.

      Zespół Harvard-Smithsonian Center for Astrophysics (CfA), który ma siedzibę w amerykańskim Cambridge, jest wspólną inicjatywą Smithsonian Astrophysical Observatory oraz Harvard College Observatory. Sześć wydziałów CfA zajmuje się badaniem powstania, rozwoju i spodziewanego końca Wszechświata.

       
    • By KopalniaWiedzy.pl
      Grupa naukowców prowadzona przez specjalistów z Kanaryjskiego Instytutu Astrofizyki odkryła w przestrzeni kosmicznej ślady naftalenu - związku będącego prekursorem niektórych substancji wchodzących w skład organizmów żywych. Jest to jeden z najbardziej złożonych związków chemicznych odkrytych dotąd w kosmosie.
      Ślady naftalenu, związku należącego do grupy węglowodorów, zostały odkryte w rejonie powstawania nowej gwiazdy w pobliżu gwiazdy Cernis 52 należącej do konstelacji Perseusza. Miejsce to jest odległe od Ziemi o około 700 lat świetlnych, co można określić jako bardzo bliskie sąsiedztwo naszej planety.
      O obecności substancji w materii międzygwiezdnej świadczą wyniki analizy tzw. widm spektralnych - wykresów przedstawiających zakresy częstotliwości fal elektromagnetycznych absorbowanych (pochłanianych) oraz emitowanych przez materię znajdującą się pomiędzy miejscem emisji światła i obserwatorium astronomicznym. Ponieważ każdy związek chemiczny pochłaniania i emituje fale o ściśle określonych, charakterystycznych dla siebie częstotliwościach, możliwe jest ustalenie składu materii międzygwiezdnej na podstawie analizy promieniowania przenikającego przez określony fragment przestrzeni.
      Jak tłumaczy jeden z autorów odkrycia, Iglesias Groth, kolejnym etapem badań będzie poszukiwanie w obserwowanej strefie innych węglowodorów. Badacze planują także wykonanie analiz mających na celu ustalenie, czy w rejonie gwiazdozbioru Perseusza znajdują się aminokwasy - związki, których polimeryzacja (łączenie w wieloelementowe łańcuchy) prowadzi do powstawania białek. Aminokwasy mogą powstać w wyniku reakcji zachodzącej pod wpływem światła ultrafioletowego pomiędzy wodą i amoniakiem. Wszystkie trzy czynniki są w badanym fragmencie przestrzeni dostępne w dużych ilościach, co rodzi nadzieję na dokonanie kolejnego przełomowego odkrycia. Wśród innych związków, które mogły powstać w okolicach gwiazdy Cernis 52, wymienia się m.in. naftochinony stanowiące prekursory niektórych witamin.
      Odkrywanie kolejnych związków organicznych w przestrzeni kosmicznej istotnie zwiększa prawdopodobieństwo istnienia życia pozaziemskiego. Nic więc dziwnego, że trwają intensywne poszukiwania kolejnych tego typu substancji. Niektóre z nich, jak np. wspomniane aminokwasy i naftalen, zostały wcześniej wykryte w meteorytach znajdowanych na Ziemi, a kolejne, jak np. proste cukry, wykrywano już wcześniej w obłokach międzygwiezdnych.
      Odkrycie Hiszpanów jest istotne z jeszcze jednego powodu. Dzięki analizie widm spektralnych udało się zrozumieć powstawanie tzw. linii rozmytych, czyli "wygaszania" bardzo licznych częstotliwości przez nieznane wcześniej substancje. Testy laboratoryjne, potwierdzone później przez analizy astrofizyczne, potwierdziły, iż przyczyną powstawania linii rozmytych jest właśnie naftalen oraz inne węglowodory posiadające w swojej strukturze atomy węgla ułożone w kilkuelemenentowe pierścienie.
      Badaczy z Kanaryjskiego Instytutu Astrofizyki wspierali eksperci z Obserwatorium Paryskiego oraz Uniwersytetu Teksańskiego. Ich wspólną publikację opublikowało czasopismo Astrophysical Journal Letters.
×
×
  • Create New...