Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Za pomocą struktury w odwłoku szerszeń wschodni (Vespa orientalis) najpierw wyłapuje promienie słoneczne, a później dzięki specjalnemu barwnikowi pozyskuje ich energię.

Wg międzynarodowego zespołu, który pracował pod przewodnictwem dr Mariana Plotkina z Uniwersytetu w Tel Awiwie, opisana umiejętność wyjaśniałaby, czemu owady są bardziej aktywne, gdy dni stają się cieplejsze.

Osowate są zazwyczaj najbardziej aktywne o poranku (ich aktywność jest wtedy mniej więcej 2-krotnie większa niż na jakimkolwiek innym etapie dnia), tymczasem szerszenie wschodnie najbardziej uwijają się w okolicach południa. Entomolodzy doszli do takiego wniosku, obserwując kopiące podziemne gniazda robotnice V. orientalis i korelując ich działania z intensywnością słońca. Narodziło się pytanie, czemu owady z Bliskiego Wschodu się tak zachowują?

Rozwiązanie zaproponował profesor Jacob S. Ishay, który stwierdził, że być może w ten sposób szerszenie "wyłapują" promieniowanie słoneczne. Zespół Plotkina wykorzystał mikroskop sił atomowych do zbadania budowy oskórka (łac. cuticula), czyli zewnętrznego szkieletu owada. Okazało się, że jego brązowa część wyglądała jak harmonijka z wyżłobieniami i podłużnymi miniwzgórkami o wysokości 160 nanometrów. Budowa żółtej części odwłoka była zupełnie inna. Tutaj oczom akademików ukazały się owalne wyrostki z charakterystycznymi zagłębieniami wielkości główki szpilki. Pojedyncza wypustka miała 50 nanometrów wysokości, a wszystkie się ze sobą zazębiały.

Brązowa część ma świetne właściwości antyrefleksyjne. Pomaga w rozdzieleniu padającego promienia na kilka wiązek rozchodzących się w różnych kierunkach. W oskórku znajduje się też druga złożona z płatów struktura. Są one ułożone na sobie, a ich grubość zmniejsza się w miarę przesuwania się w głąb. W każdej warstwie znajdują się pręciki zbudowane z chityny, które tkwią w białkowej macierzy. Opisywany twór pozwala na uwięzienie światła w kutykuli, wymusza też odbijanie się promienia między poszczególnymi warstwami.

Większa część ciała szerszenia jest brązowa i ma związek z melaniną. Żółte pasy na głowie i odwłoku to wynik nagromadzenia ksantopteryny. Ksantopteryna działa jak cząsteczka [...], która przekształca światło w energię elektryczną – tłumaczy Plotkin, który przypuszcza, że dzięki aktywności w okolicach południa szerszenie wschodnie zyskują siłę do kopania.

Dotąd uważano, że metabolizm owadów zachodzi w ciele tłuszczowym, które spełnia podobne funkcje co ludzka wątroba. Tymczasem główna aktywność metaboliczna u szerszeni wschodnich odbywa się w warstwie żółtego pigmentu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Czyli nie tylko rośliny potrafią bezpośrednio pozyskiwać energię słoneczną. Dla mnie to neisamowita wiadomość.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Po pierwsze, poznano już kiedyś ślimaka fotosyntetyzującego.

Poza tym najpierw autor badania przypuszcza, a potem śmiało twierdzi, że "główna aktywność metaboliczna u szerszeni wschodnich odbywa się w warstwie żółtego pigmentu"? Ten Plotkin to ma nazwisko dobrze dobrane.

Dlaczego nie przypisano tej aktywności zmiennocieplności?

Tu są zdjęcia tych struktur (ponoć): http://news.bbc.co.uk/earth/hi/earth_news/newsid_9254000/9254445.stm

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ślimak… to nie był ten, co sobie przyswaja chlorofil?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Czyli nie tylko rośliny potrafią bezpośrednio pozyskiwać energię słoneczną. Dla mnie to neisamowita wiadomość.

Ano. Odkrycie jest niesamowite i pokazuje tylko tyle, że natura ma w poważaniu nasze mądre definicje i klasyfikacje. I chwała jej za to, bo Życie jest dzięki temu ciekawsze :)

 

Co do ślimaka - zgadza się, chodzi pewnie o tego, który przyswaja chlorofil z zewnątrz. Moim zdaniem nijak się to ma do tego odkrycia, tutaj natura poszła o cały krok naprzód.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Poza tym najpierw autor badania przypuszcza, a potem śmiało twierdzi, że "główna aktywność metaboliczna u szerszeni wschodnich odbywa się w warstwie żółtego pigmentu"? Ten Plotkin to ma nazwisko dobrze dobrane.

Chyba nie myslisz ze jestes tak genialny ze na tak banalny pomysl wpadles ? Jezeli tak, to siedz spokojnie. Naukowcy nie sa tacy glupi zeby nie sprawdzic tego w pierwszej kolejnosci...

A ślimak to inna bajka tak jak pisali poprzednicy, on sobie poprostu izolowal chlorofil z roslin i wykorzystywal go.. A przyklad szerszenia to juz jest bardziej zaawansowana ewolucja (tak mi sie wydaje, nie unizajac wyspecjalizowanych slimaków)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Chodzi mi o to, że najpierw artykuł sugeruje snucie przypuszczenia, a potem nagle podaje potwierdzoną hipotezę (?)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nawet w referencjach do artykułu jest notka z Kopalni ;) Oczywiście przechwycenie chloroplastów, choć ciekawe, nijak się może równać do odkrycia zupełnie nowego systemu fotosyntezy, który najprawdopodobniej wyewoluował całkowicie niezależnie

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Eksperci z Rocky Mountain Institute opublikowali raport, z którego dowiadujemy się, że koszty produkcji energii z węgla osiągnęły punkt zwrotny i obecnie energia ta na większości rynków przegrywa konkurencję cenową z energią ze źródeł odnawialnych. Z analiz wynika, że już w tej chwili koszty operacyjne około 39% wszystkich światowych elektrowni węglowych są wyższe niż koszty wybudowania od podstaw nowych źródeł energii odnawialnej.
      Sytuacja ekonomiczna węgla będzie błyskawicznie się pogarszała. Do roku 2025 już 73% elektrowni węglowych będzie droższych w utrzymaniu niż budowa zastępujących je odnawialnych źródeł energii. Autorzy raportu wyliczają, że gdyby nagle cały świat podjął decyzję o wyłączeniu wszystkich elektrowni węglowych i wybudowaniu w ich miejsce odnawialnych źródeł energii, to przeprowadzenie takiej operacji stanie się opłacalne już za dwa lata.
      Szybsze przejście od węgla do czystej energii jest w zasięgu ręki. W naszym raporcie pokazujemy, jak przeprowadzić taką zmianę, by z jednej strony odbiorcy energii zaoszczędzili pieniądze, a z drugiej strony, by pracownicy i społeczności żyjące obecnie z energii węglowej mogli czerpać korzyści z energetyki odnawialnej, mówi Paul Bodnar, dyrektor Rocky Mountain Institute.
      Autorzy raportu przeanalizowali sytuację ekonomiczną 2472 elektrowni węglowych na całym świecie. Wzięli też pod uwagę koszty wytwarzania energii ze źródeł odnawialnych oraz jej przechowywania. Na podstawie tych danych byli w stanie ocenić opłacalność energetyki węglowej w 37 krajach na świecie, w których zainstalowane jest 95% całej światowej produkcji energii z węgla. Oszacowali też koszty zastąpienia zarówno nieopłacalnej obecnie, jak o opłacalnej, energetyki węglowej przez źródła odnawialne.
      Z raportu dowiadujmy się, że gdyby na skalę światową zastąpić nieopłacalne źródła energii z węgla źródłami odnawialnymi, to w bieżącym roku klienci na całym świecie zaoszczędziliby 39 miliardów USD, w 2022 roczne oszczędności sięgnęłyby 86 miliardów, a w roku 2025 wzrosłyby do 141 miliardów. Gdyby jednak do szacunków włączyć również opłacalne obecnie elektrownie węglowe, innymi słowy, gdybyśmy chcieli już teraz całkowicie zrezygnować z węgla, to tegoroczny koszt netto takiej operacji wyniósłby 116 miliardów USD. Tyle musiałby obecnie świat zapłacić, by już teraz zrezygnować z generowania energii elektrycznej z węgla. Jednak koszt ten błyskawicznie by się obniżał. W roku 2022 zmiana taka nic by nie kosztowała (to znaczy koszty i oszczędności by się zrównoważyły), a w roku 2025 odnieślibyśmy korzyści finansowe przekraczające 100 miliardów dolarów w skali globu.
      W Unii Europejskiej już w tej chwili nieopłacalnych jest 81% elektrowni węglowych. Innymi słowy, elektrownie te przeżywałyby kłopoty finansowe, gdyby nie otrzymywały dotacji z budżetu. Do roku 2025 wszystkie europejskie elektrownie węglowe będą przynosiły straty. W Chinach nieopłacalnych jest 43% elektrowni węglowych, a w ciągu najbliższych 5 lat nieopłacalnych będzie 94% elektrowni węglowych. W Indiach zaś trzeba dopłacać obecnie do 17% elektrowni, a w roku 2025 nieopłacalnych będzie 85% elektrowni.
      Co ważne, w swoich wyliczeniach dotyczących opłacalności elektrowni węglowych analitycy nie brali pod uwagę zdrowotnych i środowiskowych kosztów spalania węgla.
      Energia węglowa szybko staje się nieopłacalna i to nie uwzględniając kosztów związanych z prawem do emisji i regulacjami odnośnie zanieczyszczeń powietrza. Zamknięcie elektrowni węglowych i zastąpienie ich tańszymi alternatywami nie tylko pozwoli zaoszczędzić pieniądze konsumentów i podatników, ale może też odegrać znaczną rolę w wychodzeniu gospodarki z kryzysu po pandemii, mówi Matt Gray stojący na czele Carbon Tracker Initiative.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Polscy chemicy opracowali stabilne barwniki, silnie emitujące światło czerwone. Umożliwią one badanie mikroskopem fluorescencyjnym głęboko położonych struktur biologicznych i obserwować choćby przeciwciała lub białka biorące udział w rozwoju chorób uszkadzających mózg.
      A jednak świeci
      Zaprojektowanie, a następnie zsyntetyzowanie lepszych barwników pozwoli na dalszy rozwój mikroskopii STED (Stimulated Emission Depletion) oraz w przyszłości na jej użycie w diagnostyce medycznej – mówi prof. Daniel Gryko z Instytutu Chemii Organicznej PAN, cytowany w informacji przesłanej przez FNP, która finansowała badania.
      Polscy naukowcy, we współpracy z Francuzami i Niemcami, stworzyli nową klasę trwałych znaczników fluorescencyjnych – nowy typ diketopirolopiroli – wykazujących niezwykle intensywną emisję światła czerwonego. Prof. Gryko podkreśla, że czerwone światło jest najlepiej widoczne pod mikroskopem fluorescencyjnym. Dlatego nowe związki organiczne będzie można zastosować jako sondy fluorescencyjne.
      Wyniki badań przedstawiono w formie publikacji w czasopiśmie „Angewandte Chemie”. Publikacja ta – jak informuje FNP – zmienia sposób patrzenia na związki, które w swojej strukturze mają dwie grupy nitrowe. Dotychczas sądzono, że grupa nitrowa prawie zawsze tłumi fluorescencję. A jednak diketopirolopirole emitują światło, choć mają taką właśnie strukturę. Badacze wykazali, że przy spełnieniu odpowiednich założeń grupa nitrowa nie wpływa na fluorescencję związku. Jest to istotne, bo często taka grupa podwyższa stabilność znacznika. Odkrycie jest w trakcie patentowania.
      Od zakreślaczy po zaawansowaną medycynę
      Fluorescencja to zdolność do emitowania światła o określonym kolorze, na skutek wzbudzenia promieniowaniem świetlnym o określonej długości. Związki wykazujące fluorescencję są często wykorzystywane w praktyce - od pisaków, tzw. zakreślaczy po tablety, laptopy, a nawet telewizory z wyświetlaczami zbudowanymi z tzw. OLED-ów, czyli diod na bazie związków organicznych, emitujących światło niebieskie, zielone i czerwone.
      Związki cechujące się fluorescencją znalazły też zastosowanie w nowoczesnej biologii molekularnej i diagnostyce medycznej. Wykorzystuje się je do obserwacji – przy pomocy mikroskopów fluorescencyjnych – różnych organelli komórkowych, białek, a także do śledzenia procesów zachodzących w komórkach – mówi prof. Daniel Gryko.
      Tłumaczy, że mikroskop fluorescencyjny ma znacznie większą rozdzielczość, niż konwencjonalny mikroskop optyczny, który (z uwagi na falową naturę światła) nie pozwala na obrazowanie struktur mniejszych, niż około 200 nanometrów. Rozdzielczość o kilka rzędów wielkości większą niż mikroskop optyczny ma mikroskop elektronowy, ale można w nim obserwować wyłącznie martwe obiekty, umieszczone w próżni i bombardowane wiązką elektronów. Mikroskop fluorescencyjny pozwala badać żywe organizmy i procesy, jakie w nich naturalnie zachodzą.
      Do przeprowadzenia takich obserwacji potrzeba właśnie barwników fluorescencyjnych lub znaczników. Barwniki te muszą przenikać przez błony komórkowe żywych komórek. Dołącza się je do obiektu, który ma być uwidoczniony pod mikroskopem, np. konkretnego białka, i w ten sposób można obserwować np. specyficzne przeciwciała lub białka biorące udział w rozwoju chorób uszkadzających mózg: w chorobie Parkinsona, Alzheimera czy Huntingtona.
      Najbardziej zaawansowaną techniką mikroskopii fluorescencyjnej jest mikroskopia typu STED, w której oprócz wiązki światła wzbudzającego, wykorzystuje się dodatkową wiązkę, która wygasza fluorescencję na brzegach wzbudzonego punktu. Dzięki temu uzyskany obraz ma bardzo wysoką rozdzielczość.
      Opracowanie mikroskopii fluorescencyjnej typu STED zostało uhonorowane Nagrodą Nobla w 2014 roku. Dzięki niej możliwe stało się precyzyjne badanie m.in. wzajemnych oddziaływań białek w komórkach czy różnicowania się tkanek w rozwoju embrionalnym.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na Uniwersytecie w Glasgow po raz pierwszy eksperymentalnie potwierdzono teorię dotyczącą pozyskiwania energii z czarnych dziur. W 1969 roku wybitny fizyk Roger Penrose stwierdził, że można wygenerować energię opuszczając obiekt do ergosfery czarnej dziury. Ergosfera to zewnętrzna część horyzontu zdarzeń. Znajdujący się tam obiekt musiałby poruszać się szybciej od prędkości światła, by utrzymać się w miejscu.
      Penrose przewidywał, że w tym niezwykłym miejscu w przestrzeni obiekt nabyłby ujemną energię. Zrzucając tam obiekt i dzieląc go na dwie części tak, że jedna z nich wpadnie do czarnej dziury, a druga zostanie odzyskana, spowodujemy odrzut, który będzie mierzony wielkością utraconej energii negatywnej, a to oznacza, że odzyskana część przedmiotu zyska energię pobraną z obrotu czarnej dziury. Jak przewidywał Penrose, trudności inżynieryjne związane z przeprowadzeniem tego procesu są tak wielkie, że mogłaby tego dokonać jedynie bardzo zaawansowana obca cywilizacja.
      Dwa lata później znany radziecki fizyk Jakow Zeldowicz uznał, że teorię tę można przetestować w prostszy, dostępny na Ziemi sposób. Stwierdził, że „skręcone” fale światła uderzające o powierzchnię obracającego się z odpowiednią prędkością cylindra zostaną odbite i przejmą od cylindra dodatkową energię. Jednak przeprowadzenie takiego eksperymentu było, i ciągle jest, niemożliwe ze względów inżynieryjnych. Zeldowicz obliczał bowiem, że cylinder musiałby poruszać się z prędkością co najmniej miliarda obrotów na sekundę.
      Teraz naukowcy z Wydziału Fizyki i Astronomii University of Glasgow opracowali sposób na sprawdzenie teorii Penrose'a. Wykorzystali przy tym zmodyfikowany pomysł Zeldowicza i zamiast "skręconych" fal światła użyli dźwięku, źródła o znacznie niższej częstotliwości, i łatwiejszego do użycia w laboratorium.
      Na łamach Nature Physics Brytyjczycy opisali, jak wykorzystali zestaw głośników do uzyskania fal dźwiękowych, skręconych na podobieństwo fal świetlnych w pomyśle Zeldowicza. Dźwięk został skierowany w stronę obracającego się piankowego dysku, który go absorbował. Za dyskiem umieszczono zestaw mikrofonów, które rejestrowały dźwięk przechodzący przez dysk, którego prędkość obrotowa była stopniowo zwiększana.
      Naukowcy stwierdzili, że jeśli teoria Penrose'a jest prawdziwa, to powinni odnotować znaczącą zmianę w częstotliwości i amplitudzie dźwięku przechodzącego przez dysk. Zmiana taka powinna zajść w wyniku efektu Dopplera.
      Z liniową wersją efektu Dopplera wszyscy się zetknęli słysząc syrenę karetki pogotowia, której ton wydaje się rosnąć w miarę zbliżania się pojazdu i obniżać, gdy się on oddala. Jest to spowodowane faktem, że gdy pojazd się zbliża, fale dźwiękowe docierają do nas coraz częściej, a gdy się oddala, słyszymy je coraz rzadziej. Obrotowy efekt Dopplera działa podobnie, jednak jest on ograniczony do okrągłej przestrzeni. Skręcone fale dźwiękowe zmieniają ton gdy są mierzone z punktu widzenia obracającej się powierzchni. Gdy powierzchnia ta obraca się odpowiednio szybko z częstotliwością dźwięku dzieje się coś dziwnego – przechodzi z częstotliwości dodatniej do ujemnej, a czyniąc to pobiera nieco energii z obrotu powierzchni, wyjaśnia doktorantka Marion Cromb, główna autorka artykułu.
      W miarę jak rosła prędkość obrotowa obracającego się dysku, ton dźwięku stawał się coraz niższy, aż w końcu nie było go słychać. Później znowu zaczął rosnąć, aż do momentu, gdy miał tę samą wysokość co wcześniej, ale był głośniejszy. Jego amplituda była o nawet 30% większa niż amplituda dźwięku wydobywającego się z głośników.
      To co usłyszeliśmy podczas naszych eksperymentów było niesamowite. Najpierw, w wyniku działania efektu Dopplera częstotliwość fal dźwiękowych zmniejszała się w miarę zwiększania prędkości obrotowej dysku i spadła do zera. Później znowu pojawił się dźwięk. Stało się tak, gdyż doszło do zmiany częstotliwości fal z dodatniej na ujemną. Te fale o ujemnej częstotliwości były w stanie pozyskać część energii z obracającego się dysku i stały się głośniejsze. Zaszło zjawisko, które Zeldowicz przewidział w 1971 roku, dodaje Cromb.
      Współautor badań, profesor Daniele Faccio, stwierdza: jesteśmy niesamowicie podekscytowani faktem, że mogliśmy eksperymentalnie potwierdzić jedną z najdziwniejszych hipotez fizycznych pół wieku po jej ogłoszeniu. I że mogliśmy potwierdzić teorię dotyczącą kosmosu w naszym laboratorium w zachodniej Szkocji. Sądzimy, że otwiera to drogę do kolejnych badań. W przyszłości chcielibyśmy badać ten efekt za pomocą różnych źródeł fal elektromagnetycznych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Często i mało, czy rzadko, ale do syta? Gdyby chodziło o dietę, większość specjalistów postawiłaby na odpowiedź 1, ale w przypadku magazynowania energii jest odwrotnie. Okazuje się, że więcej można jej zmieścić ładując rzadko, ale do pełna.Taki przynajmniej wniosek płynie z badań przeprowadzonych przez zespół naukowców IChF PAN.
      Doświadczenia dotyczyły co prawda wyidealizowanych, dwuwymiarowych układów sieciowych, ale w końcu zasada to zasada. Dr Anna Maciołek, jedna z autorów pracy opublikowanej w Physical Review opisuje ją tak: Chcieliśmy zbadać, jak zmienia się sposób magazynowania energii w układzie,  gdy  pompujemy  do  niego  energię  w  postaci  ciepła,  innymi  słowy – lokalnie  go podgrzewamy.
      Wiadomo,  że ciepło  w  układach  się  rozprzestrzenia, dyfunduje.  Ale czy na gromadzenie energii ma wpływ sposób jej dostarczania; fachowo mówiąc „geometria podawania”? Czy ma znaczenie, że podajemy dużo energii w krótkim czasie i potem długo nic, i znowu dużo energii, czy też gdy podajemy malutkie porcje  tej energii, ale za to jedna po drugiej, niemal bez przerw?
      Cykliczne podawanie energii jest bardzo powszechne w naturze. Sami dostarczamy jej sobie w ten sposób, jedząc. Tę samą liczbę kalorii można dostarczyć w jednej lub dwóch dużych porcjach zjadanych w ciągu doby, albo rozbić ją na 5-7 mniejszych posiłków, między którymi są krótsze przerwy. Naukowcy wciąż się spierają, który  sposób jest dla organizmu lepszy. Jeśli jednak  chodzi o dwuwymiarowe układy sieciowe, to już wiadomo, że pod względem efektywności magazynowania wygrywa metoda „rzadko a dużo”.
      Zauważyliśmy, że w zależności od tego, w jakich porcjach i jak często podajemy energię, ilość, jaką układ potrafi zmagazynować, zmienia się. Największa jest wtedy, gdy porcje energii są duże, ale odstępy czasowe między ich podaniem też są długie, wyjaśnia Yirui Zhang, doktorantka w IChF PAN. Co ciekawe, okazuje się, że gdy taki układ magazynujący podzielimy wewnętrznie na swego rodzaju przedziały, czy też komory, to ilość energii możliwej do zmagazynowania w takim podzielonym ‘akumulatorze’ – o ile bylibyśmy go w stanie skonstruować – wzrośnie. Innymi słowy, trzy małe baterie zmagazynują więcej energii niż jedna duża, precyzuje badaczka. Wszystko to przy założeniu, że całkowita ilość wkładanej do układu energii jest taka sama, zmienia się tylko sposób jej dostarczania.
      Choć badania prowadzone przez zespół IChF PAN należą do podstawowych i ukazują po prostu fundamentalną  zasadę  rządzącą magazynowaniem energii w magnetykach, ich potencjalne zastosowania  są  nie do  przecenienia.  Wyobraźmy  sobie  np.  możliwość  ładowania  baterii elektrycznego samochodu nie w kilka godzin, lecz w kilkanaście minut albo znaczące zwiększenie pojemności  takich  akumulatorów  bez  zmiany  ich  objętości,  czyli  wydłużenie  zasięgu  auta  na jednym ładowaniu.  Nowe  odkrycie  może  też  w  przyszłości  zmienić  sposoby  ładowania  baterii różnego typu poprzez ustalenie optymalnej periodyczności dostarczania do nich energii

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jednym ze sposobów na pozyskiwanie odnawialnej energii jest wykorzystanie różnicy chemicznych pomiędzy słodką i słoną wodą. Jeśli naukowcom uda się opracować metodę skalowania stworzonej przez siebie technologii, będą mogli dostarczyć olbrzymią ilość energii milionom ludzi mieszkających w okolica ujścia rzek do mórz i oceanów.
      Każdego roku rzeki na całym świecie zrzucają do oceanów około 37 000 km3 wody. Teoretycznie można tutaj pozyskać 2,6 terawata, czyli mniej więcej tyle, ile wynosi produkcja 2000 elektrowni atomowych.
      Istnieje kilka metod generowania energii z różnicy pomiędzy słodką a słoną wodą. Wszystkie one korzystają z faktu, że sole złożone są z jonów. W ciałach stałych ładunki dodatnie i ujemne przyciągają się i łączą. Na przykład sól stołowa złożona jest z dodatnio naładowanych jonów sodu połączonych z ujemnie naładowanymi jonami chloru. W wodzie jony takie mogą się od siebie odłączać i poruszać niezależnie.
      Jeśli po dwóch stronach półprzepuszczalnej membrany umieścimy wodę z dodatnio i ujemnie naładowanymi jonami, elektrony będą przemieszczały się od części ujemnie naładowanej do części ze znakiem dodatnim. Uzyskamy w ten sposób prąd.
      W 2013 roku francuscy naukowcy wykorzystali ceramiczną błonę z azotku krzemu, w którym nawiercili otwór, a w jego wnętrzu umieścili nanorurkę borowo-azotkową (BNNT). Nanorurki te mają silny ujemny ładunek, dlatego też Francuzi sądzili, że ujemnie naładowane jony nie przenikną przez otwór. Mieli rację. Gdy po obu stronach błony umieszczono słoną i słodką wodę, przez otwór przemieszczały się niemal wyłącznie jony dodatnie.
      Nierównowaga ładunków po obu stronach membrany była tak duża, że naukowcy obliczyli, iż jeden metr kwadratowy membrany, zawierający miliony otworów na cm2 wygeneruje 30 MWh/rok. To wystarczy, by zasilić nawet 12 polskich gospodarstw domowych.
      Problem jednak w tym, że wówczas stworzenie nawet niewielkiej membrany tego typu było niemożliwe. Nikt bowiem nie wiedział, w jaki sposób ułożyć długie nanorurki borowo-azotkowe prostopadle do membrany.
      Przed kilkoma dniami, podczas spotkania Materials Research Society wystąpił Semih Cetindag, doktorant w laboratorium Jerry'ego Wei-Jena na Rutgers University i poinformował, że jego zespołowi udało się opracować odpowiednią technologię. Nanorurki można kupić na rynku. Następnie naukowcy dodają je do polimerowego prekursora, który jest nanoszony na membranę o grubości 6,5 mikrometrów. Naukowcy chcieli wykorzystać pole magnetyczne do odpowiedniego ustawienia nanorurek, jednak BNNT nie mają właściwości magnetycznych.
      Cetindag i jego zespół pokryli więc ujemnie naładowane nanorurki powłoką o ładunku dodatnim. Wykorzystane w tym celu molekuły są zbyt duże, by zmieścić się wewnątrz nanorurek, zatem BNNT pozostają otwarte. Następnie do całości dodano ujemnie naładowane cząstki tlenku żelaza, które przyczepiły się do pokrycia nanorurek. Gdy w obecności tak przygotowanych BNNT włączono pole magnetyczne, można było manewrować nanorurkami znajdującymi się w polimerowym prekursorze nałożonym na membranę.  Później za pomocą światła UV polimer został utwardzony. Na koniec za pomocą strumienia plazmy zdjęto z obu stron membrany cienką warstwę, by upewnić się, że nanorurki są z obu końców otwarte. W ten sposób uzyskano membranę z 10 milionami BNNT na każdy centymetr kwadratowy.
      Gdy taką membranę umieszczono następnie pomiędzy słoną a słodką wodą, uzyskano 8000 razy więcej mocy na daną powierzchnię niż podczas eksperymentów prowadzonych przez Francuzów. Shan mówi, że tak wielki przyrost mocy może wynikać z faktu, że jego zespół wykorzystał węższe nanorurki, zatem mogły one lepiej segregować ujemnie naładowane jony.
      Co więcej, uczeni sądzą, że membrana może działać jeszcze lepiej. Nie wykorzystaliśmy jej pełnego potencjału. W rzeczywistości tylko 2% BNNT jest otwartych z obu stron, mówi Cetindag. Naukowcy pracują teraz nad zwiększeniem odsetka nanorurek otwartych z obu stron membrany.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...