Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Niemiecki superfoton udoskonali lasery

Recommended Posts

Na Uniwersytecie w Bonn powstał kondensat Bosego-Einsteina stworzony z fotonów. Dotychczas sądzono, że fotony nie nadają się do jego tworzenia. Osiągnięcie niemieckich naukowców pozwoli na pojawienie się nowych źródeł światła, opracowania laserów pracujących z promieniami X czy zbudowania bardziej wydajnych układów scalonych.

Kondensat Bosego-Einsteina to nowy stan skupienia materii. Został on przewidziany przez Sayendrę Natha Bosego i Alberta Einsteina w latach 20. ubiegłego wieku, a otrzymano go dopiero w roku 1995. Z kondensatem mamy do czynienia wówczas, gdy po przekroczeniu temperatury krytycznej znaczna część cząstek zaczyna zachowywać się identycznie, przypominając jedną cząstkę.

Dotychczas kondensatu nie udało się uzyskać z fotonów, gdyż znikają one podczas schładzania.

Uczeni z Bonn zastosowali dwa lustra, pomiędzy którymi odbijali promień światła. Między lustrami znajdował się roztwór z pigmentem. Fotony uderzały w molekuły pigmentu i były przezeń wchłaniane, a następnie ponownie uwalnianie. Podczas tego procesu fotony przyjmowały temperaturę płynu. Schłodziły się do temperatury pokojowej i nie były tracone - wyjaśnia profesor Martin Weitz.

Następnie za pomocą lasera, którym wzbudzono cząstki pigmentu, zwiększono liczbę fotonów pomiędzy lustrami. To tak bardzo zwiększyło koncentrację schłodzonych fotonów, że zaczęły się one zachowywać jak jeden superfoton.

Uzyskano w ten sposób fotonowy kondensat Bosego-Einsteina. Okazał się on nowym źródłem światła o właściwościach podobnych do lasera. Jednak w porównaniu z laserami ma on pewną olbrzymią zaletę. Obecnie nie jesteśmy w stanie zbudować laserów pracujących z bardzo krótkimi falami, np. w zakresie ultrafioletu czy fal X. Powinno być to możliwe dzięki zastosowaniu fotonowego kondensatu Bosego-Einsteina - mówi Jan Klars.

Jeśli takie lasery powstaną, z pewnością trafią do fabryk mikroprocesorów, gdzie lasery wykorzystywane są do tworzenia obwodów logicznych. Laser pracujący ze światłem o krótszej długości fali pozwala na większą precyzję, umożliwia tworzenie mniejszych elementów, a co za tym idzie - bardziej wydajnych układów.

Share this post


Link to post
Share on other sites

jakie to proste? !prawda ..i NIEMCOM znowu sie udał skok w fizyce!

Jak zwykle przypadkiem! Tak samo jak przez przypadek w 1941 r. prof. Walter Bothe źle wyliczył przekrój czynny grafitu na pochłanianie neutronów a przez to pozostali naukowcy byli w błędnym przekonaniu o konieczności używania ciężkiej wody do budowy reaktora atomowego. Bła ha ha... y ha ha

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Najnowsze odkrycie naukowców z Uniwersytetu Przyrodniczego we Wrocławiu dowodzi, że dotychczasowe podejście do korygowania błędów wynikających z opóźnienia wiązki laserowej w atmosferze było wadliwe.  Dlatego proponują zupełnie nowe rozwiązanie, dzięki któremu obserwacje m.in.: kształtu Ziemi, topniejących lodowców oraz zmian poziomu wód oceanicznych będą dokładniejsze.
      Pomiary laserowe opierają się na rejestracji różnicy czasu pomiędzy momentem wysłania impulsu laserowego na stacji a momentem powrotu tego samego impulsu po tym, gdy zostanie on odbity przez retroreflektor na satelicie lub Księżycu. Podczas pomiaru wiązka laserowa przechodzi dwukrotnie przez atmosferę ziemską, gdzie ulega ugięciu i opóźnieniu. Technologia detektorów laserowych pozwala na uzyskanie dokładności sub-milimerowych. Jednakże błędy wyznaczenia opóźnienia wiązki laserowej w atmosferze są wielokrotnie większe i stanowią główne źródło błędów w pomiarach laserowych do satelitów i Księżyca.
      Na czym polega nowatorstwo rozwiązania Polaków?
      Naukowcy z Instytutu Geodezji i Geoinformatyki Uniwersytetu Przyrodniczego we Wrocławiu zaproponowali zupełnie nowe i innowacyjne podejście do korygowania opóźnienia wiązki laserowej w atmosferze. Podejście opiera się na uwzględnieniu grubości warstw atmosfery, przez które przechodzi laser. Do wyznaczenia wartości opóźnienia lasera wykorzystuje się odczyty meteorologiczne na stacji, do których wyliczana jest poprawka zależna od wysokości satelity nad horyzontem oraz od początkowej wartości opóźnienia wiązki lasera. W zaproponowanej metodzie analizuje się wszystkie pomierzone odległości na wszystkich stacjach i wylicza się dla każdej stacji poprawki, które są wprost proporcjonalne do opóźnienia wiązki lasera wynikającego z bezpośrednich pomiarów meteorologicznych i grubości atmosfery, którą musi pokonać laser. Poprawkę meteorologiczną wystarczy wyliczać raz na tydzień dla każdej stacji laserowej, dzięki czemu obliczenia pozostają stabilne nawet dla stacji z niewielką liczbą zarejestrowanych pomiarów laserowych do satelitów, a zarazem błąd wynikający z opóźnienia atmosferycznego zostaje prawie całkowicie usunięty. Metoda opracowana przez polski zespół pozwala na skuteczną eliminację od 75 do 90% błędów systematycznych w pomiarach laserowych wynikających z błędów opóźnienia atmosferycznego.
      Sposób redukcji błędów meteorologicznych już niedługo ma szansę stać się standardem w laserowych pomiarach odległości do satelitów zwiększając dokładność nawet historycznych obserwacji Księżyca i satelitów, dzięki swojej prostocie i uniwersalności. Pozwala również na wykrycie błędnych odczytów z barometrów, które wcześniej negatywnie wpływały na satelitarne obserwacje Ziemi i Księżyca. Przełoży się to na poprawę przyszłych oraz wcześniejszych obserwacji kształtu Ziemi, tzw. geoidy, zmiany centrum masy Ziemi i obserwacji nieregularności w ruchu obrotowym, obserwacji topniejących lodowców oraz zmian poziomu wód oceanicznych.
      Po co mierzymy odległości do satelitów?
      Dzięki pomiarom laserowym do sztucznych i naturalnego satelity Ziemi dowiedzieliśmy się, ile wynosi stała grawitacji i masa Ziemi, o ile zmienia się spłaszczenie Ziemi w czasie, możemy korygować i wyliczać poprawki pozycji satelitów Galileo i GLONASS oraz zidentyfikowaliśmy, gdzie znajduje się środek masy Ziemi i jak przemieszcza się w czasie za sprawą topniejących lodowców na Grenlandii. Pomiary laserowe do Księżyca pozwoliły odkryć, że Księżyc oddala się od Ziemi o 3,8 cm rocznie. Ponadto pozwoliły na dokładny opis wahań w ruchu Księżyca, czyli tzw. libracji oraz zrewidować pochodzenie srebrnego globu.
      Wrocławskie centrum obliczeniowe pomiarów laserowych
      Grupa badawcza kierowana przez profesora Krzysztofa Sośnicę od wielu lat zajmuje się rozwojem technik laserowych i mikrofalowych w geodezji satelitarnej, a także wyznaczaniem precyzyjnych orbit sztucznych satelitów i parametrów opisujących Ziemię. W Instytucie Geodezji i Geoinformatyki Uniwersytetu Przyrodniczego we Wrocławiu od 2017 roku funkcjonuje Stowarzyszone Centrum Analiz Międzynarodowej Służby Pomiarów Laserowych do Sztucznych Satelitów i Księżyca (ang. International Laser Ranging Service, ILRS). Centrum odpowiada za monitorowanie jakości orbit satelitów Globalnych Nawigacyjnych Systemów Satelitarnych (GNSS): Galileo, GLONASS, BeiDou i QZSS z wykorzystaniem orbit opartych o obserwacje mikrofalowe i bezpośrednie pomiary laserowe. Jako jedyne na świecie, wrocławskie centrum specjalizuje się w kombinacji dwóch technik obserwacyjnych sztucznych satelitów: laserowej i mikrofalowej GNSS. 

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki nowemu sposobowi kontroli rozszerzania się materii w swobodnie opadającym kondensacie Bosego-Einsteina udało się zanotować najniższą z zarejestrowanych temperatur. Naukowcy z Niemiec i Francji obrazowali spadek kondensatu przez ponad 2 sekundy. Zanotowali przy tym temperaturę 38 pikokelwinów (10-12 K). Tak niskiej temperatury nigdy wcześniej nie udało się uzyskać. To znacznie chłodniej niż w przestrzeni kosmicznej, której średnia temperatura wynosi 2,7 K.
      Opracowana przez naukowców metoda umożliwi też lepsze pomiary stałej grawitacji, a być może stanie się alternatywną metodą wykrywania fal grawitacyjnych.
      Kondensat Bosego-Einsteina to występujący w bardzo niskich temperaturach taki stan skupienia materii, w którym tworzące kondensat atomy zachowują się bardziej jak fale, a nie jak cząstki. Fale te nakładają się na siebie, przez co kondensat zachowuje się jak jedna cząstka. Istnienie takiego stanu materii przewidzieli w 1924 roku Satyendra Nath Bose i Albert Einstein. Po raz pierwszy udało się go uzyskać w 1995 roku. Od tamtej pory laboratoria, które są w stanie go wytworzyć, wykorzystują kondensat do badania kwantowej natury materii. Badania takie prowadzi się, na przykład, za pomocą interferometru atomowego, wykorzystującego falową naturę atomów. Badania prowadzi się na swobodnie opadającym kondensacie Bosego-Einsteina, uwolnionym z pułapki magnetycznej. Jednak zaraz po uwolnieniu kondensatu z pułapki do głosu dochodzą siły oddziałujące pomiędzy cząstkami, które szybko zamieniają się w energię kinetyczna cząstek. Kondensat zaczyna się rozszerzać i jego obserwacja staje się niemożliwa.
      Dlatego też kluczową kwestią jest ograniczenie rozszerzania się kondensatu. Obecnie stosowane metody pozwalają na efektywną kontrolę kondensatu wzdłuż jego średnicy, ale nie w osi jego swobodnego spadku.
      W ramach swoich najnowszych badań francusko-niemiecki zespół badawczy zmienił pole magnetyczne w pułapce na oscylujące, zmieniające kształt z kuli w cienką elipsę. Kondensat uwalniany jest w takim momencie, by jego rozszerzanie się wzdłuż osi spadku było jak najmniejsze.
      Podczas eksperymentów zespół Ernsta Rasela z Uniwersytetu Leibniza w Hanowerze wykorzystał 110-metrową wieżę w Bremie. To wyspecjalizowana budowla służąca badaniom nad swobodnym spadkiem i mikrograwitacją. Uczeni rozpoczęli eksperyment od utworzenia kondensatu Bosego-Einsteina złożonego z około 100 000 atomów rubidu. Kondensat był następnie poddawany swobodnemu spadkowi, który trwał 4,74 sekundy. W czasie spadku był obrazowany za pomocą lasera i kamery. Gdy kondensat opadał bez wykorzystania żadnych technik jego kontrolowania, ulegał degradacji już po 160 milisekundach. Jednak, gdy naukowcy wykorzystali swoją technikę kontroli, byli w stanie obrazować kondensat przez ponad 2 sekundy, a osiągnięta w nim temperatura wyniosła rekordowo niskie 38 pK.
      Naukowcy nie powiedzieli jednak ostatniego słowa. Twierdzą bowiem, że dzięki bardziej złożonej architekturze soczewek magnetycznych można będzie lepiej kontrolować kondensat. Pomóc też może zmniejszenie liczby atomów w kondensacie. Ich zdaniem można by dzięki temu osiągnąć temperaturę nawet 14 pK. Problemem może być jednak za mała liczba atomów, przez co kondensat szybko stanie się zbyt rzadki, by można było go obserwować.
      Fizyk Florian Schreck w Amsterdamu pochwalił osiągnięcia kolegów stwierdzając, że to znaczący krok w kierunku badań kondensatu Bosego-Eisteina w warunkach umożliwiających swobodny spadek. Uczony dodał, że bardzo interesujące będzie zastosowanie atomów strontu w miejsce atomów rubidu, gdyż to właśnie stront uważany jest za ten pierwiastek, który pozwoli na wykorzystanie interferometrów atomowych w roli wykrywaczy fal grawitacyjnych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po raz pierwszy udało się dwukrotnie wykryć poruszający się pojedynczy foton, nie niszcząc go przy tym. To ważna osiągnięcie, gdyż dotychczas foton ulegał zwykle zniszczeniu podczas jego rejestrowania. Najnowsze osiągnięcie może przyczynić się do powstania szybszych i bardziej odpornych na zakłócenia sieci optycznych i komputerów kwantowych.
      Zwykle wykrycie fotonu wiąże się z jego zaabsorbowaniem. Jednak foton może nieść ze sobą cenne informacje, a w takich przypadkach specjaliści woleliby mieć możliwość odczytania tych danych i przepuszczenia fotonu dalej, do miejsca docelowego. Żadna metoda detekcji nie jest w 100% skuteczna, zawsze istnieje ryzyko, że coś się prześliźnie niewykryte, mówi jeden z autorów badań, Stephan Welte, fizyk kwantowy z Instytutu Optyki Kwantowej im. Maxa Plancka w niemieckim Garching. Dlatego też możliwość niedestrukcyjnego wykrywania fotonów jest tak ważna – ustawienie detektorów jeden za drugim zwiększa szanse, że wykryjemy wszystkie interesujące nas fotony.
      Dotychczas opracowano różne sposoby wykrywania fotonu bez jego niszczenia. Często polegają one na interakcji fotonu z jonem, nadprzewodzącym kubitem lub innymi systemami kwantowymi. Jednak w ten sposób możemy albo wykonać pojedynczą niedestrukcyjną rejestrację poruszającego się fotonu, albo liczne niedestrukcyjne odczyty stacjonarnego fotonu uwięzionego we wnęce.
      Teraz naukowcy z Niemiec dwukrotnie wykryli pojedynczy foton wędrujący światłowodem. Wykorzystali w tym celu skonstruowany przez siebie niedestrukcyjny detektor zbudowany z pojedynczego atomu rubidu uwięzionego w odbijającej wnęce. Foton, wpadając do wnęki, odbija się od jej ścian, zmieniając stan kwantowy atomu, co można wykryć za pomocą lasera. Uczeni umieścili dwa takie detektory w odległości 60 metrów od siebie. Wykryły one ten sam foton, nie absorbując go. Welte mówi, że teoretycznie można w ten sposób wykryć pojedynczy foton nieskończoną liczbę razy, jednak w praktyce istnienie 33-procentowe ryzyko, że użycie detektora spowoduje utratę fotonu.
      Nowa technologia może w przyszłości pozwolić na śledzenie trasy fotonów. Pozwoli to na przyspieszenie pracy systemów kwantowych, gdyż będziemy w stanie upewniać się, że zakodowane w fotonach informacje dotrą tam, gdzie powinny.
      Powiedzmy, że chcesz wysłać kwantową informację z Monachium do Nowego Jorku. Możesz w międzyczasie wielokrotnie sprawdzać, czy foton nie został po drodze utracony, np. sprawdzając, czy dotarł do Paryża. Jeśli okaże się, że foton zgubił się po drodze, można będzie natychmiast wysłać go ponownie. Nie trzeba będzie czekać na zakończenie całej transmisji, by upewnić się, że wszystko poszło tak, jak powinno, wyjaśnia główny autor badań, Emanuele Distante.
      Twórcy nowych detektorów uważają, że nie można ich będzie wykorzystać do podsłuchania kwantowej komunikacji. To jak śledzenie przesyłek. Możesz dowiedzieć się, gdzie jest paczka, ale nic nie wiesz o jej zawartości. Foton zawiera w sobie pewną kwantową informację. Możesz w sposób niedestrukcyjny go wykryć, ale nie odczytać, stwierdza Welte.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z International Centre for Radio Astronomy Research (ICRAR) i The University of Western Australia (UWA) we współpracy ze specjalistami z Francuskiego Narodowego Centrum Badań Kosmicznych (CNES) i laboratorium Systèmes de Référence Temps-Espace w Obserwatorium Paryskim ustanowili rekord świata dla najbardziej stabilnej transmisji światła laserowego przez atmosferę.
      Wykorzystano przy tym nowatorskie australijskie rozwiązania stabilizacji fazy w połączeniu z zaawansowanymi terminalami optycznymi. Dzięki temu przesłano światło lasera, które nie zostało zakłócone przez obecność atmosfery. "Jesteśmy w stanie korygować turbulencje w 3D, czyli w lewo-prawo, góra-dół oraz, co najważniejsze, wzdłuż trasy promienia. Nasza technologia działa tak, jakby atmosfera nie istniała. Dzięki temu możemy wysłać wysoce stabilny sygnały laserowe o wysokiej jakości", mówi główny autor badań, doktorant Benjamin Dix-Matthews z ICRAR i UWA.
      Wynikiem prac zespołu jest stworzenie najbardziej precyzyjnej metody pomiaru upływu czasu w dwóch różnych lokalizacjach.
      Doktor Sascha Schediwy w ICRAR-UWA mówi, że osiągnięcie to niesie ze sobą niezwykle ekscytujące możliwości. Jeśli będziemy mieli jeden z takich terminali optycznych na Ziemi, a drugi na satelicie krążącym wokół planety, to możemy zacząć badać podstawy fizyki. Będzie można z niedostępną wcześniej precyzją przetestować ogólną teorię względności Einsteina oraz sprawdzić, czy podstawowe stałe fizyczne podlegają zmianom w czasie.
      Jednak nowa technologia znajdzie też bardziej praktyczne zastosowania. Będzie można na przykład udoskonalić satelitarne pomiary zmiany poziomów wód czy odkrywać podziemne złoża minerałów, dodaje Schediwy. Nowy system posłuży też optycznej komunikacji. Nasza technologia może pozwolić na zwiększenie o wiele rzędów wielkości tempa komunikacji optycznej z satelitami. Przyszła generacja satelitów będzie mogła znacznie szybciej otrzymać potrzebne informacje z Ziemi, dodaje.
      Technologia, którą właśnie przetestowano, powstała na potrzeby projektu Square Kilometre Array – największego radioteleskopu na świecie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Australijscy teoretycy kwantowi wykazali, że możliwe jest przełamanie obowiązującej od 60 lat bariery ograniczającej koherencję światła laserowego. Koherencja, czyli spójność wiązki światła, może być w przypadku laserów opisana jako liczba fotonów wyemitowanych jeden po drugim w tej samej fazie. To element decydujący o przydatności lasera do różnych zastosowań.
      Obowiązujące poglądy na temat spójności światła laserowego zostały nakreślone w roku 1958 przez amerykańskich fizyków, Arthura Schawlowa i Charlesa Townesa. Obaj otrzymali zresztą Nagrodę Nobla za swoje prace nad laserami. Teoretycznie wykazali, ze koherencja wiązki lasera nie może być większa niż kwadrat liczby fotonów obecnych w laserze, mówi profesor Howard Wiseman z Griffith University. Stał on na czele grupy naukowej złożonej z Griffith University i Macquarie University.
      Poczynili jednak pewne założenia odnośnie ilości energii dostarczanej do lasera oraz sposobu, w jaki jest ona uwalniana, by uformować wiązkę. Ich założenia miały wówczas sens i wciąż są prawdziwe w odniesieniu do większości laserów. Jednak mechanika kwantowa nie potrzebuje takich założeń, dodaje Wiseman.
      W naszym artykule wykazaliśmy, że prawdziwa granica koherencji, nakładana przez mechanikę kwantową, to czwarta potęga liczby fotonów przechowywanych w laserze, dodaje profesor Dominic Berry.
      Naukowcy zapewniają, że taką koherencję można osiągnąć w praktyce. Przeprowadzili bowiem symulację numeryczną i stworzyli oparty na mechanice kwantowej model lasera, który może osiągnąć ten nowy teoretyczny poziom spójności wiązki. Wiązka taka, poza spójnością, jest identyczna z wiązką konwencjonalnego lasera.
      Trzeba będzie poczekać na pojawienie się takich laserów. Udowodniliśmy jednak, że używając nadprzewodników można będzie zbudować taki laser, którego granice będą wyznaczane przez zasady mechaniki kwantowej. Obecnie ta sama technologia jest wykorzystywana do budowy komputerów kwantowych. Nasz laser może właśnie w nich znaleźć zastosowanie, mówi doktorant Travis Baker.
      Profesor Wiseman dodaje zaś, że prace jego zespołu każą postawić interesujące pytanie o możliwość skonstruowania bardziej energooszczędnych laserów. To przyniosłoby duże korzyści. Mam nadzieję, że w przyszłości będziemy mogli zbadać tę kwestię.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...