Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Znaleziono "kamień z Rosetty" brązowych karłów

Rekomendowane odpowiedzi

Jak informuje Królewskie Towarzystwo Astronomiczne chilijsko-brytyjski zespół astronomów znalazł "kamień z Rosetty" zimnych brązowych karłów (gwiazdy karłowate typu T). Uczeni pracujący pod kierunkiem Avrila Day-Jonesa z Universidad de Chile trafił na wyjątkowy układ gwiazd składający się z bardzo zimnego bogatego w metan brązowego karła oraz białego karła. Odkrycie to jest pierwszą wiarygodną wskazówką pozwalającą szacować wiek i masę brązowego karła.

Gwiazdy wchodzące w skład układu mają niewielką masę i słabo na siebie oddziałują. Dzieli je odległość około 1/4 roku świetlnego.

Metanowe karły są rozmiarów Jowisza, a temperatura ich powierzchni jest niższa niż 1000 stopni Celsjusza. Są one zbyt zimne, by doszło w nich do fuzji, wskutek czego ciągle się ochładzają i z czasem zanikają. Przeciwieństwem ich są białe karły czyli gwiazdy, które się wypaliły i pozostało z nich stygnące jądro. Odkrytemu właśnie układowi gwiazd nie towarzyszy mgławica planetarna, która powstaje wskutek oddzielenia się zewnętrznych warstw gwiazdy.

Naukowcy mówią, że towarzystwo białego karła pozwoli na zbadanie wieku całego układu i będzie zasadniczym elementem, dzięki któremu dowiemy się więcej o fizyce bardzo zimnych gwiazd.

Uczeni najpierw odkryli brązowego karłą i oznaczyli go jako LSPM 1457+0857. Obserwując go zauważyli, iż towarzyszy mu niebieski obiekt. Bliższe badania wykazały, że jest to biały karzeł. Gwiazdy oznaczono zatem jako LSPM 1459+0857 A i B.

W przeszłości, jeszcze przed powstaniem białego karła, odległość pomiędzy obiema gwiazdami była mniejsza niż obecnie. Gdy jedna z nich stała się białym karłem, utrata przez nią masy zmniejszyła oddziaływanie grawitacyjne pomiędzy gwiazdami, zwiększając odległość pomiędzy nimi. Jednak wiek białego karła wskazuje, że takie systemy mogą przetrwać całe miliardy lat.

Podwójne systemy podobne do tego dostarczają nam niezwykle ważnych informacji i pozwalają lepiej zrozumieć atmosferę i masę lekkich bardzo zimnych karłów oraz pobliskich planet. Fakt, że takie systemy mogą przetrwać miliardy lat daje nadzieję, iż w przyszłości znajdziemy ich więcej - mówi doktor Pinfield z University of Hertfordshire.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Astronomowie odkryli brązowego karła, którego powierzchnia jest znacznie bardziej gorąca niż powierzchnia Słońca. Tymczasem brązowe karły nie są gwiazdami. To obiekty gwiazdopodobne, których masa jest zbyt mała, by mógł w nich zachodzić proces przemiany wodoru w hel. Mają masę co najmniej 13 razy większą od Jowisza. Od olbrzymich planet różnie je to, że są zdolne do fuzji deuteru. Po jakimś czasie proces ten zatrzymuje się. Najgorętsze i najmłodsze brązowe karły osiągają temperaturę ok. 2500 stopni Celsjusza. Później stygną. Temperatura najstarszych i najmniejszych z nich to około -26 stopni.
      W najnowszym numerze Nature Astronomy naukowcy opisali brązowego karła, którego temperatura powierzchni sięga 7700 stopni Celsjusza. To znacznie więcej, niż 5500 stopni, jaką ma temperatura Słońca. Nic więc dziwnego, że gdy na początku XXI wieku po raz pierwszy zauważono ten obiekt, omyłkowo go sklasyfikowano. Dopiero powtórna analiza danych przeprowadzona przez Na'amę Hallakoun z izraelskiego Instytutu Naukowego Weizmanna i jej zespół pokazały, z czym mamy do czynienia.
      Nasz brązowy karzeł ma tan olbrzymią temperaturę, gdyż obiega po bardzo ciasnej orbicie białego karła WD 0032-317. To właśnie jego promieniowanie ogrzewa brązowego karła do tak olbrzymich temperatur. Brązowy karzeł znajduje się w obrocie sychronicznym wokół WD 0032-317, co oznacza, że jest cały czas zwrócony w jej kierunku tylko jedną stroną. To zaś powoduje olbrzymie różnice temperatur. Strona nocna brązowego karła jest aż o 6000 stopni Celsjusza chłodniejsza niż strona dzienna.
      Gdy układ ten po raz pierwszy zaobserwowano przed dwoma dziesięcioleciami, sądzono, że jest to układ podwójny dwóch białych karłów. Jednak gdy Hallakoun i jej zespół przyjrzeli się danym, zauważyli coś, co kazało im ponownie przyjrzeć się temu układowi. Mogli obserwować go rejestrując linie emisji pochodzące z dziennej strony brązowego karła. Dane były tak zaskakujące, że początkowo naukowcy sądzili, że nieprawidłowo je opracowali. Później zauważyli, że tak naprawdę obserwują układ składający się z białego karła, wokół którego krąży brązowy karzeł. Uczeni, którzy przed 20 laty zaobserwowali ten system, nie zauważyli tego, gdyż obserwowali nocną stronę brązowego karła.
      Autorzy odkrycia mówią, że przyda się ono do badania ultragorących Jowiszów, czyli olbrzymich planet krążących blisko swojej gwiazdy. Znalezienie takich planet nastręcza na tyle dużo trudności, że obecnie znamy pojedyncze planety tego typu. Dlatego też astronomowie nie od dzisiaj myślą o wykorzystaniu brązowych karłów krążących blisko gwiazd w roli modelu do badań ultragorących Jowiszów. Brązowe karły łatwiej jest obserwować.
      Układ WD 0032-317 rzuci też światło na ewolucję gwiazd. Na podstawie obecnie obowiązujących modeli naukowcy stwierdzili, że brązowy karzeł ma kilka miliardów lat. Z kolei niezwykle wysoka temperatura białego karła WD 0032-317 wskazuje, że istnieje on zaledwie od około miliona lat. Co więcej, ma on masę zaledwie 0,4 mas Słońca. Zgodnie z obowiązującymi teoriami, biały karzeł o tak małej masie nie może istnieć. Ewolucja gwiazdy do takiego stanu musiałaby bowiem trwać dłużej, niż istnieje wszechświat.
      Dlatego naukowcy sądzą, że brązowy karzeł przyspieszył ewolucję towarzyszącej mu gwiazdy. Hallakoun i jej zespół uważają, że przez pewien czas oba obiekty znajdowały się we wspólnej otoczce gazowej. Pojawiła się ona, gdy gwiazda macierzysta zmieniła się w czerwonego olbrzyma i pochłonęła brązowego karła. Z czasem wspólna otoczka została usunięta, w czym swój udział miał brązowy karzeł, co doprowadziło do szybszego pojawienia się białego karła.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Śmierć gwiazdy musiała być tak gwałtowna, że powstały w jej wyniku pobliski biały karzeł wchłania obecnie materię zarówno z wewnętrznych, jak i zewnętrznych obszarów swojego układu planetarnego. Astronomowie po raz pierwszy zaobserwowali białego karła pochłaniającego szczątki zarówno planet skalistych, jak i obiektów lodowych. Nigdy wcześniej nie widzieliśmy, by na powierzchnię białego karła jednocześnie opadały te oba typy obiektów. Mamy nadzieję, że dzięki temu lepiej zrozumiemy układy planetarne, które wciąż pozostają nienaruszone, stwierdził Ted Johnson z University of California Los Angeles (UCLA).
      Badania dają naukowcom unikatową okazję do zbadania składu planet pozasłonecznych. Mimo,że znamy obecnie ponad 5000 egzoplanet, nasza wiedza o składzie wewnętrznym planety ogranicza się do Ziemi. Tymczasem w pochłanianych przez białego karła szczątkach naukowcy obserwują azot, tlen, magnez, krzem, żelazo i inne pierwiastki. Bardzo duża ilość żelaza sugeruje, że doszło do rozerwania planet skalistych, a biały karzeł wchłania szczątki ich żelaznych jąder. Z kolei niespodziewanie duża obecność azotu sugeruje obecność obiektów lodowych. Najbardziej pasuje do tego mieszanina w stosunku 2:1 materiału z planety podobnej do Merkurego z materiałem z komet. Dużo żelaza i zamrożonego azotu sugerują bardzo różne warunki formowania się planet. W Układzie Słonecznym nie znamy obiektu, który miałby taki skład, dodaje Johnson.
      Odkrycie jest interesujące również z innego powodu. Uważa się bowiem, że niewielkie lodowe obiekty „nawodniły” suche skaliste planety Układu Słonecznego. Przed miliardami lat komety i asteroidy dostarczyły wodę na Ziemię, tworząc warunki do powstania życia. Skoro zaś teraz gwiazda, która zniszczyła swój układ planetarny, pochłania duże ilości lodu, może to oznaczać, że duże rezerwuary wody są czymś powszechnym w układach planetarnych. Życie, jakie znamy, wymaga skalistej planety bogatej w takie pierwiastki jak węgiel, tlen czy azot. Obfitość tych pierwiastków, jaką obserwujemy w przypadku tego białego karła, wskazuje na obecność zarówno obiektów skalistych jak i bogatych w pierwiastki lotne. To pierwszy taki przypadek wśród setek zbadanych białych karłów, dodaje profesor Benjamin Zuckerman z UCLA.
      Teorie dotyczące ewolucji systemów planetarnych opisują m.in. to, co dzieje się, gdy czerwony olbrzym zmienia się w białego karła. Gwiazda gwałtownie traci zewnętrzne warstwy, dochodzi do dramatycznych zmian orbit planet. Obiekty, jak asteroidy czy planety karłowate, które znajdą się zbyt blisko umierającej gwiazdy, zostają przez nią wchłonięte. Najnowsze badania, w czasie których naukowcy przyglądają się białemu karłowi G238-44 położonemu zaledwie 86 lat świetlnych od Ziemi, dowodzą, że około 100 milionów lat po tym, jak gwiazda weszła w fazę białego karła, jest ona w stanie pochłaniać materiał z regionów odpowiadających pasowi asteroid i pasowi Kuipera w Układzie Słonecznym.
       


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Western University odkryli trzy najszybciej obracające się brązowe karły, obiekty zwane czasem nieudanymi gwiazdami. To masywne obiekty znajdujące się pomiędzy planetami a gwiazdami. Są bardziej masywne niż planety, ale zbyt mało masywne by mogły zachodzić w nich przemiany wodoru w hel. Teraz Megan Tannock i Stanimir Metchey informują o zidentyfikowaniu brązowych karłów, które obracają się blisko limitu prędkości, powyżej którego mogą zostać rozerwane.
      Odkryte przez Kanadyjczyków obiekty mają średnicę podobną do Jowisza, ale są od niego od 40 do 70 razy bardziej masywne. Każdy z nich wykonuje pełny obrót w ciągu zaledwie godziny. Dotychczas najszybszy znany brązowy karzeł obracał się w ciągu 1,4 godziny. Jowiszowi zaś pełen obrót zajmuje 10 godzin. Z dokonanych obliczeń wynika, że prędkość obrotowa wspomnianych karłów wynosi aż 100 km/s czyli 360 000 km/h. Dla porównania, Jowisz obraca się z prędkością 12,6 km/s (45 360 km/h).
      Wydaje się, że dotarliśmy do granicy prędkości obrotowej brązowych karłów, mówi Tannock. Pomimo intensywnych poszukiwań naukowcom nie udało się dotychczas znaleźć szybciej obracających się brązowych karłów. Szybszy obrót mógłby spowodować ich rozerwanie.
      Wspomniane brązowe karły zostały odkryte przez teleskop 2MASS, który działał do 2001 roku. Kanadyjczycy dokonali pomiarów prędkości karłów wykorzystując dane z Teleskopu Kosmicznego Spitzera (zakończył on swoją misję w styczniu 2020), a następnie potwierdzli je za pomocą naziemnych Gemini North i Magellan.
      Brązowe karły, podobnie jak gwiazdy i planety, obracają się wokół własnej osi. W miarę jak stygną i się kurczą, obracają się coraz szybciej. Dotychczas udało się zmierzyć prędkość obrotową około 80 tego typu obiektów. Są wśród nich takie, które wykonują pełny obrót poniżej 2 godzin, jak i takie, które potrzebują na to kilkudziesięciu godzin.
      Przy takiej różnorodności tempa obrotu naukowców zdziwił fakt, że trafili na trzy obiekty obracają się niemal z tą samą prędkością około 1 obrotu na godzinę. Właściwości tej nie można w tej chwili łączyć ze wspólnymi znanymi cechami fizycznymi. Jeden z karłów jest gorący, drugi zimy, a temperatura trzeciego mieści się pomiędzy tymi dwoma. Różnica temperatur wskazuje zaś, że są w różnym wieku. Uczeni nie wykluczają, że to przypadkowa zbieżność. Karły niemal osiągnęły maksymalną prędkość obrotu. Jeśli ją przekroczą, zostaną rozerwane przez siły odśrodkowe.
      Specjaliści uważają, że brązowe karły składają się głównie z wodoru i helu. Są też znacznie bardziej gęste niż olbrzymie planety. Wodór w jądrach brązowych karłów jest poddany tak wysokiemu ciśnieniu, że zachowuje się jak metal. Występują w nim swobodne elektrony. Zmieniają one sposób dystrybucji ciepła we wnętrzu karła, a wraz z bardzo szybkim obrotem może to wpływać na rozkład w nim masy. Stan wodoru czy jakiegokolwiek innego gazu poddanego tak wielkim ciśnieniom to dla nas zagadka. Nawet w najbardziej zaawansowanych laboratoriach trudno jest uzyskać taki stan materii, stwierdza Metchev.
      Obecne modele mówią, że maksymalna prędkość obrotowa brązowego karła to 50 do 80 procent szybciej niż 1 obrót na godzinę. Być może jednak modele te nie oddają całego obrazu. Może istnieć nieznanym nam czynnik, który powoduje, że brązowe karły nie mogą obracać się szybciej niż te, które zaobserwowaliśmy, dodaje Metchev.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie z University of Wisconsin-Madison informują o prawdopodobnym znalezieniu nietkniętej olbrzymiej planety krążącej wokół białego karła. To sensacyjne odkrycie wskazuje, że planeta może przetrwać zniszczenie swojej gwiazdy.
      Biały karzeł WD 1856 – który jest zaledwie o 40% większy od Ziemi – stanowi część układu potrójnego znajdującego się w odległości około 80 lat świetlnych od Ziemi. Odkryta właśnie planeta wielkości Jowisza, WD 1856 b, jest około 7-krotnie większa od swojej gwiazdy i obiega ją w ciągu zaledwie 34 godzin. W jakiś sposób WD 1856 b zdołała znaleźć się blisko białego karła i pozostać w jednym kawałku, mówi profesor Andrew Vanderburg. W procesie tworzenia się białego karła, pobliskie planety zostają zniszczone. Wszystko, co później znajdzie się zbyt blisko, zostaje zwykle rozerwane przez potężne oddziaływanie grawitacyjne białego karła. Musimy sobie odpowiedzieć na pytanie, jak to się stało, że WD 1856 b znajduje się tak blisko, a mimo to jej los nie potoczył się według jednego z tych scenariuszy.
      Odkrycia niezwykłego systemu dokonano za pomocą teleskopów TESS i Spitzera. Znajduje się on w Gwiazdozbiorze Smoka. Planeta krąży tam wokół chłodnego Białego karła o średnicy zaledwie 18 000 kilometrów. Gwiazda może liczyć sobie nawet 10 miliardów lat i jest odległym członkiem układu potrójnego.
      Gdy gwiazdy podobne do Słońca, a taki właśnie jest WD 1856, zużyją swoje paliwo, zaczynają zwiększać objętość stają się setki, a nawet tysiące razy większe niż wcześniej. Powstaje czerwony olbrzym, który wchłania i spopiela to, co znajduje się w jego sąsiedztwie. W końcu odrzuca on zewnętrzne warstwy, tracąc do 80% masy. Pozostaje gorące gęste jądro, biały karzeł. Gdyby planeta WD 1856 b znajdowała się w czasie procesu „puchnięcia” gwiazdy na swojej obecnej orbicie, musiałaby zostać przed nią wchłonięta. Jak wynika z obliczeń zespołu Vanderburga, by pozostać bezpieczną, musiałaby znajdować się co najmniej 50-krotnie dalej, niż obecnie.
      Od dawna wiemy, że gdy rodzi się biały karzeł, niewielkie odległe obiekty, jak asteroidy czy komety, mogą być przyciągane przez gwiazdę. Zwykle są rozrywane przez jej silną grawitację i tworzą dysk wokół gwiazdy, mówi Siyi Xu z Gemini Observatory na Hawajach. Mieliśmy pewne dane mówiące, że i planety mogą odbywać taką podróż, jednak po raz pierwszy widzimy planetę, która przetrwała ją nietknięta.
      Naukowcy nie potrafią na razie wyjaśnić obecności WD 1856 b tak blisko białego karła. Upewnili się za to, że obserwowany przez nich obiekt nie jest brązowym karłem.Obserwacje za pomocą różnych instrumentów wykazały, że nie emituje on własnego promieniowania, zatem najprawdopodobniej jest to duża planeta.
      Odkrycie planety blisko białego karła skłoniło też naukowców do przeprowadzenia symulacji dla scenariusza, w którym planetą taka jest skalista i ma wielkość Ziemi. Okazało się, że mogłaby na niej istnieć woda w stanie ciekłym. To zaś oznacza, że skoro planeta jest w stanie przetrwać tworzenie się białego karła i może wokół niego krążyć, to jeśli pojawiłyby się na niej warunki korzystne dla życia, to mogłyby one trwać miliardy la dłużej, niż się obecnie zakłada. Dodatkowe obliczenia wykazały, że Teleskop Kosmiczny Jamesa Webba będzie w stanie wykryć wodę i dwutlenek węgla w atmosferze takiej planety rejestrując zaledwie 5 jej przejść na tle gwiazdy macierzystej, a kombinację gazów mogących wskazywać na istnienie życia wykryje po zaledwie 25 przejściach.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dziwny biały karzeł podróżujący przez Drogę Mleczną może być pozostałością po „częściowej supernowej”, twierdzą autorzy badań opublikowanych niedawno na łamach Monthly Notices of the Royal Astronomical Society. Gwiazda mknąca przez naszą galaktykę z prędkością 900 000 km/h od lat stanowi zagadkę dla naukowców. Wkrótce po jej odkryciu w 2015 roku zauważono, że ma ona niezwykłą atmosferę.
      Wewnętrzna struktura białych karłów jest zwykle zbudowana z warstw. Jądra tych gwiazd składają się przeważnie z węgla oraz tlenu i są otoczone warstwą helu, a następnie warstwą wodoru. Astronomowie obserwujące białe karły zwykle widzą sam wodór, sam hel lub mieszaninę helu i węgla.
      Tymczasem naukowcy badający białego karła SDSS J1240+6710, znajdującego się 1430 lat świetlnych od Ziemi stwierdzili ze zdumieniem, że jego atmosfera to zadziwiająca mieszanina tlenu, neonu, magnezu i krzemu. Gdy autorzy najnowszych badań, korzystając z Teleskopu Hubble'a, przyjrzeli się gwieździe bliżej, stwierdzili, że w jej atmosferze znajduje się też węgiel, sód i glin. Nigdy wcześniej nie stwierdzono takiego składu atmosfery białego karła. Co więcej SD J1240+6710 jest też wyjątkowo mało masywny. Ma on zaledwie około 40% masy Słońca.
      Gdy odkryliśmy, że ten wyjątkowy biały karzeł ma małą masę i porusza się bardzo szybko, zaczęliśmy się zastanawiać, co się z nim stało w przeszłości, mówi główny autor badań, Boris Gansicke. Uczeni doszli do wniosku, że wszystkie niezwykłe właściwości gwiazdy można wyjaśnić „częściową supernową”.
      Supernowe to najpotężniejsze eksplozje gwiazd. Może do nich dojść, gdy biały karzeł pobierze zbyt wiele masy od towarzyszącej jej gwiazdy. Cała ta dodatkowa masa ściska jądro białego karła, co prowadzi do wzrostu ciśnienia i temperatury. W końcu zostaje zapoczątkowana termonuklearna reakcja łańcuchowa, w wyniku której dochodzi do wybuchu, a ten rozrywa białego karła na strzępy.
      Naukowcy zauważają, że pierwiastki obecne w atmosferze SDSS J1240+6710 mogą pochodzić z początku reakcji termojądrowej. Jednak zastanawiający jest tutaj brak pierwiastków takich jak żelazo, chrom, mangan czy nikiel. Te cięższe pierwiastki powstają z lżejszych. Ich brak sugeruje, że nasz biały karzeł przebył tylko część drogi do stania się supernową. Nie osiągnął temperatury i ciśnienie potrzebnego do wyprodukowania cięższych pierwiastków. To właśnie czyni tego karła wyjątkowym. Rozpoczęła się tam reakcja termojądrowa, ale zatrzymała się ona zanim powstały pierwiastki z grupy żelaza. To był krótki „epizod supernowej”, trwał kilka godzin, stwierdza Gansicke.
      Z badań wynika, że SDSS J1240+6710 był małą gwiazdą w porównaniu do białych karłów, które zamieniają się w supernową. Jako taki mógł co najwyżej skończyć jako słaba supernowa typu Iax.
      Dawniej astronomowie sądzili, że termojądrowa supernowa niszczy białego karła w całości. Jednak w ciągu ostatnich 10-15 lat dowiedzieliśmy się, że możliwe jest powstanie częściowej supernowej, po której pozostaje spalony biały karzeł. Eksplozja nie jest w tym przypadku na tyle silna, by zniszczyć gwiazdę, dodaje uczony.
      Eksplozja taka odrzuciła SDSS J1240+6710 od jej towarzysza, powodując, że przemierza on przestrzeń kosmiczną z prędkością, z jaką krążył wokół towarzyszącej jej gwiazdy. Taki scenariusz wyjaśnia zarówno masę, skład jak i prędkość badanego białego karła.
      Na podstawie masy i temperatury uczeni szacują, że do częściowej supernowej doszło przed około 40 milionami lat. Nie wiemy, jak wyglądał towarzysz SDSS J1240+6710, ale prawdopodobnie był on podobny do badanego karła.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...