Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Po raz pierwszy w historii nauki nie trzeba chemicznie utrwalać, barwić ani preparować komórek, by móc je zbadać. Dzięki rentgenowskiemu mikroskopowi nanotomograficznemu, najnowszemu wynalazkowi specjalistów z Centrum Helmholtza w Berlinie (Helmholtz-Zentrum Berlin, HZB), da się analizować całe żywe komórki w ich naturalnym środowisku. Zostają one szybko zamrożone, a akademicy zyskują trójwymiarowy obraz najmniejszych nawet elementów strukturalnych ssaczych komórek.

Nowy mikroskop w jednym etapie zapewnia obraz 3D całej komórki. Daje mu to sporą przewagę nad mikroskopem elektronowym, w przypadku którego trójwymiarowy obraz uzyskuje się dopiero po zestawieniu wielu cienkich przekrojów. Proces rekonstruowania w ten sposób pojedynczej komórki może zająć tygodnie. Co więcej, w odróżnieniu od mikroskopów fluorescencyjnych, gdzie by zobaczyć jakąś strukturę, korzysta się z tzw. fluoroforów, czyli substancji chemicznych fluoryzujących po wzbudzeniu światłem o określonej długości, tutaj nie trzeba używać żadnych znaczników.

Mikroskop berlińczyków bazuje na naturalnym kontraście między materiałem organicznym a wodą. Zespół doktora Gerda Schneidera z Instytutu Tkanek Miękkich i Materiałów Funkcjonalnych współpracował z naukowcami z amerykańskiego National Cancer Institute. Akademicy uzyskali trójwymiarowy obraz komórek mysiego gruczolakoraka. Ujrzeli obie błony otoczki jądrowej, pory jądrowe, liczne wgłębienia błony wewnętrznej mitochondrium oraz wtręty (inkluzje) komórkowe w różnych organellach komórkowych, np. lizosomach. Nietrudno się domyślić, że dysponowanie tak szczegółowym obrazem pomoże w wyjaśnieniu wielu procesów, m.in. sposobu wnikania wirusów i nanocząstek do komórki lub jądra.

Między innymi w wyniku zastosowania specjalnych soczewek, rentgenowski mikroskop nanotomograficzny gwarantuje zdolność rozdzielczą rzędu 30 nanometrów; dla porównania 10 nanometrów to 1/10 średnicy ludzkiego włosa. Podczas testów z wykorzystaniem synchrotronu BESSY II z HZB niemiecko-amerykański zespół oświetlał obiekty światłem o częściowej koherencji czasowej (w takim przypadku relatywne fazy dwóch fal elektromagnetycznych podlegają losowym fluktuacjom, ale nie są one na tyle duże, by fale stały się zupełnie niespójne). Obraz uzyskiwany za pomocą światła o częściowej koherencji zapewnia znacznie większy kontrast niż obraz generowany przy użyciu światła niespójnego (niekoherentnego).

Nowa mikroskopia rentgenowska pozwala na pozostawienie wokół próbki szerszego marginesu, co daje lepszy ogląd przestrzenny. Wcześniej był on ograniczony ze względu na wymogi układu oświetleniowego. Początkowo specjalna przysłona wyłapywała z monochromatycznego promieniowania rentgenowskiego fale o określonej długości. Niestety, musiała się ona znajdować tak blisko próbki, że nie dało się nią poruszać. Naukowcy opracowali jednak specjalny kondensator, który zbiera monochromatyczne światło i bezpośrednio oświetla obiekt. Dzięki temu próbkę można obracać w zakresie 158 stopni. Mamy tu więc chyba do czynienia z twórczym rozwinięciem metody PIXE, w ramach której analizuje się widmo promieniowania rentgenowskiego, emitowanego przez materiał bombardowany wiązką naładowanych cząstek z akceleratora (tutaj synchrotronu).

Share this post


Link to post
Share on other sites

"rentgenowski mikroskop nanotomograficzny gwarantuje zdolność rozdzielczą rzędu 30 nanometrów; dla porównania 10 nanometrów to 1/10 średnicy ludzkiego włosa."

 

to na pewno tak miało brzmieć?

Pozdrawiam

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Za drzwiami pewnego domu na północy Francji od lat wisiał obraz nazywany przez rodzinę Breughlem. Uważano jednak, że to tania reprodukcja dzieła flamandzkiego malarza. Gdy właściciele poprosili jakiś czas temu o ocenę, ku zaskoczeniu wszystkich okazało się, że to XVII-wieczny oryginał pędzla Pietera Breughla Młodszego. Pod koniec marca ma on zostać sprzedany przez dom aukcyjny Daguerre Val de Loire.
      Dzieło określa się mianem wyjątkowego. Mierzy 112 na 184 cm. Szacuje się, że obraz może zostać sprzedany nawet za 800 tys. euro. Uważa się, że De betaling van de tienden (Zapłata dziesięciny, obraz jest również znany pod innymi tytułami, w tym Biuro poborcy podatkowego, Chłopi w domu prawnika czy Wiejski prawnik) został ukończony między 1615 a 1617 r. To jedna z licznych wersji tej samej sceny malowanej przez Breughla Młodszego.
      Obraz odkrył Malo de Lussac - zaproszony przez pragnących zachować anonimowość właścicieli specjalista z domu aukcyjnego Daguerre Val de Loire. Nie mógł uwierzyć własnym oczom. Jak się okazało, obraz znajdował się w posiadaniu rodziny od 1900 r., nikt nie znał jednak jego wcześniejszych losów.
      Gdy wysłaliśmy dzieło do oceny eksperckiej i potwierdzono, że to Breughel [w grudniu ubiegłego roku autentyczność stwierdził Klaus Ertz], właściciele poprosili, by zrobić im zdjęcie przed obrazem, z którym mieszkali przez tak długi czas. To było zarówno śmieszne, jak i poruszające - powiedział cytowany przez Guardiana de Lussac.
      Kilka wersji opisywanego obrazu znajduje się w słynnych muzeach, w tym w Luwrze, Museum voor Schone Kunsten w Gandawie czy Musées royaux des Beaux-Arts de Belgique w Brukseli. Ta znaleziona w domu na północy Francji wyróżnia się jednak rozmiarami. Wg domu aukcyjnego, może być największym formatem tej sceny. Jak już wspominaliśmy, mierzy 112x184 cm, podczas gdy inne przedstawienia mieszczą się zwykle w zakresie 55x75 cm-100x120 cm.
      Aukcję obrazu, który zachował się w naprawdę dobrym stanie, zaplanowano na 28 marca w Hôtel Drouot w Paryżu. Od 11 do 17 marca w hotelu odbędzie się wystawa przedaukcyjna tego i szeregu innych dzieł.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Analiza mikrobiomu XVII-wiecznego obrazu pokazała, że choć różne mikroorganizmy systematycznie niszczą dzieło sztuki, są też takie, które można by wykorzystać do jego ochrony.
      Na obraz składają się materiały organiczne i nieorganiczne (płótno, barwniki czy werniks), które stanowią idealne środowisko dla bakterii i grzybów. Zwiększa to, oczywiście, ryzyko biodegradacji.
      By opisać mikrobiom obrazu Incoronazione della Virgine Carla Bononiego (1620), zespół Elisabetty Caselli z Uniwersytetu w Ferrarze usunął fragment o powierzchni 4 mm2 (znajdował się on przy uszkodzeniu).
      Posługując się różnymi metodami hodowlanymi i mikroskopem skaningowym z urządzeniem do mikroanalizy rentgenowskiej (ang. scanning electron microscopy with energy dispersive spectrometer, SEM-EDS), Włosi zidentyfikowali szereg mikroorganizmów. Wyizolowali liczne szczepy gronkowców (Staphylococcus) i bakterii z rodzaju Bacillus, a także grzyby z rodzajów Aspergillus, Penicillium, Cladosporium i Alternaria.
      Autorzy artykułu z pisma PLoS ONE podkreślają, że niektóre barwniki z XVII-wiecznych farb stanowiły świetne źródło składników odżywczych dla mikroorganizmów.
      Gdy podczas testów posłużono się preparatem zawierającym spory 3 gatunków bakterii z rodzaju Bacillus (Bacillus subtilis, Bacillus pumilus i Bacillus megaterium), okazało się, że hamuje on wzrost bakterii i grzybów wyizolowanych z obrazu. Tego typu produkty mogłyby więc chronić dzieła sztuki, zapobiegając ich biodegradacji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Kraby pustelniki mieszkają w porzuconych ślimaczych muszlach. Ponieważ często są niewygodne, właściwie ciągle szukają nowych. Po przeprowadzce muszą na nowo zaznajamiać się z tym, jak teraz wyglądają i jak powinny się poruszać, dlatego stanowią świetny model do badania obrazu ciała.
      Dr Kohei Sonoda z Uniwersytetu w Kobe analizował z zespołem zachowanie krabów pustelników z gatunku Coenobita rugosus. Naukowcy przyklejali do muszli plastikowe płytki, przez co stawały się one źle wyważone. Później obserwowali, jak zwierzęta przemieszczają się korytarzem z naprzemiennymi zakrętami w prawo i lewo. Początkowo pustelniki miały problemy ze zrównoważeniem muszli, jednak w ciągu 10-20 s modyfikowały swój chód i zwiększały kąt wchodzenia w zakręty.
      Inny z członków zespołu, prof. Yukio Gunji, podkreśla, że dzięki krabom zyskujemy nowe informacje dot. świadomości ciała, składającej się ze schematu i obrazu ciała. Schemat to części, którymi można manipulować i nad którymi mamy kontrolę, a obraz to koncepcja ciała jako pewnej całości. Można też powiedzieć, że schemat stanowi informację na temat własnego ciała, która pozwala działać, np. jeździć rowerem, a obraz ciała daje możliwość stwierdzenia, co się z nami w danym momencie dzieje.
      Zakładamy, że obraz ciała jest dynamicznie uzgadniany ze schematem i w ten sposób powstaje świadomość ciała. Skromne C. rugosus pokazały, że rzeczywiście się tak dzieje. Japończycy uważają, że uzyskane wyniki zmieniają pogląd na posługiwanie się narzędziami. Kiedyś o narzędziach mówiono raczej w kontekście inteligencji, teraz akademicy skłaniają się bardziej ku koncepcji wirtualnego ciała.
    • By KopalniaWiedzy.pl
      Największe na świecie muzeum i instytucja badawcza - Smithsonian Institution - chce ułatwić dostęp do swych niezwykle bogatych zbiorów. W skład kolekcji Smithsonian wchodzi... 137 milionów przedmiotów. Jednak powierzchnia wystawiennicza instytucji pozwala na jednoczesne zaprezentowanie jedynie 2% z nich.
      Smithsonian chce wykonać trójwymiarowe modele swoich zabytków i udostępnić je badaczom, szkołom czy muzeom na całym świecie.
      Wszystko rozpoczęło się od stworzenia repliki popiersia Thomasa Jeffersona. Jak twierdzą przedstawiciele muzeum, jest to największa na świecie trówymiarowa replika zabytku spełniająca standardy muzealne. Dotychczas takie kopie tworzono ręcznie z różnych materiałów. Wraz z rozwojem techniki możliwe stało się wykorzystanie trójwymiarowych drukarek, które, w połączeniu ze specjalnymi skanerami odtwarzają obiekty z dokładnością liczoną w mikrometrach.
      Popiersie Jeffersona to dokładna kopia posągu z Monticello. Zostało ono wykonane na potrzeby wystawy „Niewolnictwo w Monticello Jeffersona: paradoks wolności“.
      Replikę stworzyli Adam Metallo i Vince Rossi przy użyciu wartego 100 000 skanera laserowego Minolty. Koordynowali oni prace firm Studio EIS, które odpowiadało za zdigitalizowanie statuy polityka, oraz RedEye on Demand, które zajęło się drukowaniem.
      Teraz Metallo i Rossi wpadli na pomysł wykorzystania tańszych urządzeń, jak aparaty cyfrowe i dostępne w chmurach obliczeniowych oprogramowanie do digitalizacji, by stworzyć cyfrowe trójwymiarowe archiwum Smithsonian. Potrzebują jednak pomocy większej liczby firm zajmujących się tworzeniem samych wydruków.
      Z jednej strony chcieliby zeskanować jak najwięcej obiektów, z drugiej - obecnie pracują we dwójkę, muszą zatem dobrze zastanawiać się, jakie przedmioty wybrać. Ponadto, jak mówi Rossi, chcą być pewni, że tworzone przez nich dane cyfrowe będą dostępne również i za kilkadziesiąt lat. Ma on jednak nadzieję, że nie będzie z tym większego problemu. Modele 3D to tekstowy opis milionów punktów z jakich się składają. Odczytanie i ewentualna konwersja takich danych nie powinna zatem nastręczać trudności przyszłym pokoleniom.
      Jak na razie obaj specjaliści są w stanie zdigitalizować kilkadziesiąt przedmiotów rocznie. Część z nich zostanie wydrukowana, reszta będzie dostępna w formie cyfrowej. Metallo nie wyklucza, że wydrukowane obiekty będą wypożyczane przez Smithsonian. Jednak prawdziwy postęp dokona się wówczas, gdy trójwymiarowe drukarki staną się szeroko dostępne i każde zainteresowana instytucja będzie mogła pobrać z internetu trójwymiarowy model zabytku i wydrukować go na swoje potrzeby.
    • By KopalniaWiedzy.pl
      Tim Sweeney, założyciel firmy Epic Games stwierdził podczas zakończonej właśnie konferencji DICE Summit, jeszcze za naszego życia doczekamy fotorealistycznych gier 3D renderowanych w czasie rzeczywistym. Sweeney zauważył, że każde kolejne udoskonalenie techniczne pojawiające się w grach od Ponga po Crisis wiedzie nas ku takim właśnie grom.
      Granicę fotorealizmu wyznaczają możliwości ludzkiego oka. Organ ten jest w stanie przetworzyć 30-megapikselowy obraz z prędkością około 70 klatek na sekundę. Zdaniem Sweeneya, żeby oddać wszelkie subtelności obrazu, gry światła, interakcje poszczególnych elementów wirtualnego świata, by stworzyć w czasie rzeczywistym fotorealistyczną trójwymiarową scenę potrzebna jest moc obliczeniowa rzędu 5000 teraflopsów. Tymczasem obecnie najbardziej wydajne karty graficzne oferują 2,5 teraflopsa. Przepaść jest ogromna, jednak wystarczy uświadomić sobie, że w 1993 roku gdy na rynek trafiła gra Doom, wiele osób nie mogło z niej skorzystać, gdyż wymagała ona od karty graficznej mocy rzędu 10 megaflopsów. Różnica pomiędzy wydajnością ówczesnych kart graficznych, a kart używanych obecnie, jest zatem znacznie większa, niż pomiędzy dzisiejszymi kartami, a urządzeniami, jakich będziemy potrzebowali w przyszłości.
      Oczywiście moc obliczeniowa to nie wszystko. Wciąż bowiem nie istnieją algorytmy, które pozwoliłyby na realistyczne odwzorowanie wielu elementów. Specjaliści potrafią stworzyć realistyczny model skóry, dymu czy wody, jednak wciąż poza naszymi możliwościami jest stworzenie dokładnych modeli ludzkiego ruchu czy mowy. Nie mamy algorytmów, więc nawet gdybyśmy już dzisiaj dysponowali doskonałym komputerem ograniczałaby nas nie jego moc obliczeniowa, a nasze umiejętności tworzenia algorytmów - mówi Sweeney.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...