Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Ekstremalnie droga litografia

Rekomendowane odpowiedzi

Na urządzenia litograficzne kolejnej generacji będą mogły pozwolić sobie tylko nieliczne firmy. Sprawdzają się bowiem najbardziej pesymistyczne przewidywania dotyczące ich ceny. Dan Hutcheson, prezes firmy VLSI Research poinformował, że skanery litograficzne pracujące w ekstremalnie dalekim ultrafiolecie (EUV) będą kosztowały.... 125 milionów dolarów za sztukę. Gdy w 2003 roku Intel przewidział, że tego typu urządzenia będą potrzebne i zaproponował ich budowę, przedstawiciele koncernu uważali, że skaneray EUV będą kosztowały około 20 milionów dolarów.

Jednak Dan Hutcheson mówi, że nie powinniśmy się dziwić tak wysokiej cenie. Przypomina, że już wiele lat temu Risto Puhakka, który wówczas był prezesem VLSI Research przewidywał, dokonując porównania kosztu budowy skanera do piksela oferowanej przezeń rozdzielczości, że ceny mogą być aż tak wysokie. Wtedy wszyscy uważali, że to wielka przesada, a teraz zamawiają urządzenia w takiej cenie - mówi Hutcheson.

Pomimo sporych opóźnień, spowodowanych ogromnymi kosztami i trudnościami technicznymi, litografia w ekstremalnie dalekim ultrafiolecie powoli zdobywa rynek. Firma ASML sprzedała dwa skanery w wersji alfa. Nabywcami byli IMEC i Sematech. Cena urządzenia to podobno 60 milionów USD. Ponadto ASML ma zamówienia na sześć, czyli wszystkie, skanerów produkcyjnych NXE:3100. Cena pojedynczego urządzenia sięga ponoć 90 milionów USD. Firma zebrała też 10 zamówień na NXE-3300, czyli skanery EUV nowej generacji. Zostaną one kupione przez Barclays Capital, Hynix, IMEC, Intela, Samsunga, Toshibę i TSMC.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Powoli zbliżamy się do granicy tej grupy technologii. Nawet jeśli granica teoretyczna jest trochę dalej to jak widać granica ekonomiczna jest tuż tuż.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
czemu te ceny są takie wysokie?

Cena rośnie zawsze szybciej niż możliwości. Jeśli zbudowanie samochodu jeżdżącego 200 km/h kosztuje – załóżmy bardzo dowolnie – półtora raza tyle, co jeżdżącego 100 km/h, to zbudowanie jeżdżącego 300 km/h będzie kosztować na przykład nie kolejne półtora raza tyle, tylko 2,5 raza tyle. A jeżdzącego 400 km/h już na przykład 7 razy tyle.

 

Albo inaczej: skrócić czas biegu na 100 metrów z 30 sekund do 15, czyli o połowę da radę większość ludzi. Ale spróbuj to skrócić jeszcze o połowę (czyli w sumie mniej, bo tylko o 7,5 sekundy zamiast 15)… Ilu ludzi pobiegnie setkę w 7,5 sekundy? Tutaj skrócenie o każde 0,01 sekundy jest kosztowniejsze (trudniejsze, droższe) niż sekunda u początkującego.

 

To się sprawdza w zasadzie w każdej dziedzinie życia.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jurgi dziękuję za łopatologiczne wytłumaczenie (wiem że ten efekt też występuje), ale spodziewałem się odpowiedzi typu że plastik który używają jest drogi, chodziło mi o elementy skanera.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Myślę ze im krótsza fala tym odwzorowanie dokładniejsze (rozdzielczość większa) , te skanery to chyba mają słuzyć powielaniu struktur układów scalonych (a im cieńsza ściezka tym mniejsza pojemność , tym większa mozliwa częstotliwość pracy takiego układu, przewaga nad konkurencją, mniejsze zuzycie materiałów).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Intel ogłosił, że wybuduje w Polsce supernowoczesny zakład integracji i testowania półprzewodników. Stanie on w Miękini pod Wrocławiem, a koncern ma zamiar zainwestować w jego stworzenie do 4,6 miliarda dolarów. Inwestycja w Polsce to część obecnych i przyszłych planów Intela dotyczących Europy. Firma ma już fabrykę półprzewodników w Leixlip w Irlandii i planuje budowę drugiej w Magdeburgu w Niemczech. W sumie Intel chce zainwestować 33 miliardy euro w fabrykę w Niemczech, zakład badawczo-rozwojowo-projektowy we Francji oraz podobne przedsięwzięcia we Włoszech, Hiszpanii i Polsce.
      Zakład w Polsce ma rozpocząć pracę w 2027 roku. Zatrudnienie znajdzie w nim około 2000 osób, jednak inwestycja pomyślana została tak, by w razie potrzeby można było ją rozbudować. Koncern już przystąpił do realizacji fazy projektowania i planowania budowy, na jej rozpoczęcie będzie musiała wyrazić zgodę Unia Europejska.
      Intel już działa w Polsce i kraj ten jest dobrze przygotowany do współpracy z naszymi fabrykami w Irlandii i Niemczech. To jednocześnie kraj bardzo konkurencyjny pod względem kosztów, w którym istnieje solidna baza utalentowanych pracowników, stwierdził dyrektor wykonawczy Intela, Pat Gelsinger. Przedstawiciele koncernu stwierdzili, że Polskę wybrali między innymi ze względu na istniejącą infrastrukturę, odpowiednio przygotowaną siłę roboczą oraz świetne warunki do prowadzenia biznesu.
      Zakład w Miękini będzie ściśle współpracował z fabryką w Irlandii i planowaną fabryką w Niemczech. Będą do niego trafiały plastry krzemowe z naniesionymi elementami elektronicznymi układów scalonych. W polskim zakładzie będą one cięte na pojedyncze układy scalone, składane w gotowe chipy oraz testowane pod kątem wydajności i jakości. Stąd też będą trafiały do odbiorców. Przedsiębiorstwo będzie też w stanie pracować z indywidualnymi chipami otrzymanymi od zleceniodawcy i składać je w końcowy produkt. Będzie mogło pracować z plastrami i chipami Intela, Intel Foundry Services i innych fabryk.
      Intel nie ujawnił, jaką kwotę wsparcia z publicznych pieniędzy otrzyma od polskiego rządu. Wiemy na przykład, że koncern wciąż prowadzi negocjacje z rządem w Berlinie w sprawie dotacji do budowy fabryki w Magdeburgu. Ma być ona warta 17 miliardów euro, a Intel początkowo negocjował kwotę 6,8 miliarda euro wsparcia, ostatnio zaś niemieckie media doniosły, że firma jest bliska podpisania z Berlinem porozumienia o 9,9 miliardach euro dofinansowania. Pat Gelsinger przyznał, że Polska miała nieco więcej chęci na inwestycję Intela niż inne kraje.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wydział Oceanografii i Geografii Uniwersytetu Gdańskiego (UG) wzbogacił się o skaner do obrazowania hiperspektralnego rdzeni osadów geologicznych. To pierwsze tego typu urządzenie zainstalowane w Polsce. Na świecie posiada go zaledwie parę laboratoriów.
      Zgodnie z wiadomościami, jakimi dysponują uczeni z Gdańska, na świecie jest niewiele laboratoriów wyposażonych w taki sprzęt. W Europie znajdziemy go w Szwajcarii, Niemczech, Norwegii i Francji. Dysponują nim także badacze ze Stanów Zjednoczonych i Nowej Zelandii.
      Obrazowanie hiperspektralne to technika podobna do fotografii cyfrowej, z tym że w standardowej fotografii obraz rejestrowany jest w trzech zakresach długości fali (RGB), natomiast obraz zarejestrowany przez kamerę hiperspektralną składa się z kilkudziesięciu czy nawet kilkuset kanałów odpowiadających ściśle określonym długościom fal - wyjaśnił cytowany przez PAP prof. Wojciech Tylmann.
      Inspirująca współpraca z zespołem szwajcarskim
      Pomysł na badania i zorganizowanie laboratorium to pokłosie współpracy prof. Tylmanna z zespołem prof. Martina Grosjeana z Uniwersytetu w Bernie. To w stolicy Szwajcarii zapoczątkowano bowiem badania nad zastosowaniem obrazowania hiperspektralnego w analizie rdzeni osadów jeziornych. Stworzony przez fińską firmę Specim Ltd. prototyp skanera został zainstalowany na Universität Bern. Teraz takim właśnie sprzętem dysponuje UG.
      Skaner został zakupiony w ramach grantu NCN Opus pt. „Eutrofizacja, zmiany reżimu mieszania i anoksja: reakcje warwowego Jeziora Gorzyńskiego (Polska NW) na zmienność klimatu i wpływ człowieka w holocenie”.
      Możliwości skanera
      Prof. Tylmann wyjaśnia, że skaner pozwala analizować próbki o dużych wymiarach: o szerokości 4,5-12 cm i długości nawet 150 cm. Zainstalowana w urządzeniu kamera hiperspektralna umożliwia obrazowanie w zakresie widzialnym i bliskiej podczerwieni (400-1000 nm) z bardzo wysoką rozdzielczością przestrzenną (40 μm).
      Profesor opowiada, że obiekt jest przesuwany ze stałą prędkością pod kamerą hiperspektralną. Dzięki temu w stosunkowo krótkim czasie można uzyskać kompletny hiperspektralny obraz całego fragmentu rdzenia.
      Jezioro Gorzyńskie pod lupą naukowców
      Jezioro Gorzyńskie, którym zajmują się naukowcy z Uniwersytetu Gdańskiego, leży w północno-zachodniej Polsce (woj. wielkopolskie). Odnaleziono w nim osady z zachowanymi warstwowaniami rocznymi, co pozwala na określenie ich wieku. W połączeniu z długą historią użytkowania okolic jeziora przez człowieka sprawia to, że Jezioro Gorzyńskie jest znakomitym obiektem do rekonstrukcji paleośrodowiskowych, a zwłaszcza w zakresie interakcji człowiek-środowisko - wyjaśnił specjalista Piotrowi Mirowiczowi z PAP-u.
      Zespół chce ustalić, jak kształtowały się produktywność jeziora i tutejsze warunki tlenowe podczas zmiany środowiska z naturalnego na zdominowane przez człowieka i czy ostatnie dziesięciolecia są w tej kwestii niezwykłe (inne niż odleglejsza przeszłość).

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Intel potwierdził, że kosztem ponad 20 miliardów dolarów wybuduje nowy kampus w stanie Ohio. W skład kampusu wejdą dwie supernowoczesne fabryki półprzewodników, gotowe do produkcji w technologii 18A. To przyszły, zapowiadany na rok 2025 proces technologiczny Intela, w ramach którego będą powstawały procesory w technologii 1,8 nm. Budowa kampusu rozpocznie się jeszcze w bieżącym roku, a produkcja ma ruszyć w 2025 roku.
      Intel podpisał też umowy partnerskie z instytucjami edukacyjnymi w Ohio. W ich ramach firma przeznaczy dodatkowo 100 milionów dolarów na programy edukacyjne i badawcze w regionie. "To niezwykle ważna wiadomość dla stanu Ohio. Nowe fabryki Intela zmienią nasz stan, stworzą tysiące wysoko płatnych miejsc pracy w przemyśle półprzewodnikowym", stwierdził gubernator Ohio, Mike DeWine.
      To największa w historii Ohio inwestycja dokonana przez pojedyncze prywatne przedsiębiorstwo. Przy budowie kampusu zostanie zatrudnionych 7000 osób, a po powstaniu pracowało w nim będzie 3000osób. Ponadto szacuje się, że inwestycja długoterminowo stworzy dziesiątki tysięcy miejsc pracy w lokalnych firmach dostawców i partnerów.
      Kampus o powierzchni około 4 km2 powstanie w hrabstwie Licking na przedmieściach Columbus. Będzie on w stanie pomieścić do 8 fabryk. Intel nie wyklucza, że w sumie w ciągu dekady zainwestuje tam 100 miliardów dolarów, tworząc jeden z największych na świecie hubów produkcji półprzewodników.
      Tak olbrzymia inwestycja przyciągnie do Ohio licznych dostawców produktów i usług dla Intela. Będzie ona miała daleko idące konsekwencje. Fabryka półprzewodników różni się od innych fabryk. Stworzenie tak wielkiego miejsca produkcji półprzewodników jest jak budowa małego miasta, pociąga za sobą powstanie tętniącej życiem społeczności wspierających dostawców usług i produktów. [...] Jednak rozmiar ekspansji Intela w Ohio będzie w dużej mierze zależał od funduszy w ramach CHIPS Act, stwierdził wiceprezes Intela ds. produkcji, dostaw i operacji, Keyvan Esfarjani.
      Nowe fabryki mają w 100% korzystać z energii odnawialnej, dostarczać do systemu więcej wody niż pobiera oraz nie generować żadnych odpadów stałych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz pierwszy w historii udało się zdobyć klucz szyfrujący, którym Intel zabezpiecza poprawki mikrokodu swoich procesorów. Posiadanie klucza umożliwia odszyfrowanie poprawki do procesora i jej analizę, a co za tym idzie, daje wiedzę o luce, którą poprawka ta łata.
      W tej chwili trudno jest ocenić rzeczywisty wpływ naszego osiągnięcia na bezpieczeństwo. Tak czy inaczej, po raz pierwszy w historii Intela udało się doprowadzić do sytuacji, gdy strona trzecia może wykonać własny mikrokod w układach tej firmy oraz przeanalizować poprawki dla kości Intela, mówi niezależny badacz Maxim Goryachy. To właśnie on wraz z Dmitrym Sklyarovem i Markiem Ermolovem, którzy pracują w firmie Positive Technolgies, wyekstrahowali klucz szyfrujący z układów Intela. Badacze poinformowali, że można tego dokonać w przypadku każdej kości – Celerona, Pentium i Atoma – opartej na mikroarchitekturze Goldmont.
      Wszystko zaczęło się trzy lata temu, gdy Goryachy i Ermolov znaleźli krytyczną dziurę Intel SA-00086, dzięki której mogli wykonać własny kod m.in. w Intel Management Engine. Intel opublikował poprawkę do dziury, jednak jako że zawsze można przywrócić wcześniejszą wersję firmware'u, nie istnieje całkowicie skuteczny sposób, by załatać tego typu błąd.
      Przed pięcioma miesiącami badaczom udało się wykorzystać tę dziurę do dostania się do trybu serwisowego „Red Unlock”, który inżynierowie Intela wykorzystują do debuggowania mikrokodu. Dzięki dostaniu się do Red Unlock napastnicy mogli
      zidentyfikować specjalny obszar zwany MSROM (microcode sequencer ROM). Wówczas to rozpoczęli trudną i długotrwałą procedurę odwrotnej inżynierii mikrokodu. Po wielu miesiącach analiz zdobyli m.in. klucz kryptograficzny służący do zabezpieczania poprawek. Nie zdobyli jednak kluczy służących do weryfikacji pochodzenia poprawek.
      Intel wydał oświadczenie, w którym zapewnia, że opisany problem nie stanowi zagrożenia, gdyż klucz używany do uwierzytelniania mikrokodu nie jest zapisany w chipie. Zatem napastnik nie może wgrać własnej poprawki.
      Faktem jest, że w tej chwili napastnicy nie mogą wykorzystać podobnej metody do przeprowadzenia zdalnego ataku na procesor Intela. Wydaje się jednak, że ataku można by dokonać, mając fizyczny dostęp do atakowanego procesora. Nawet jednak w takim przypadku wgranie własnego złośliwego kodu przyniosłoby niewielkie korzyści, gdyż kod ten nie przetrwałby restartu komputera.
      Obecnie najbardziej atrakcyjną możliwością wykorzystania opisanego ataku wydaje się hobbistyczne użycie go do wywołania różnego typu zmian w pracy własnego procesora, przeprowadzenie jakiegoś rodzaju jailbreakingu, podobnego do tego, co robiono z urządzeniami Apple'a czy konsolami Sony.
      Atak może posłużyć też specjalistom ds. bezpieczeństwa, który dzięki niemu po raz pierwszy w historii będą mogli dokładnie przeanalizować, w jaki sposób Intel poprawia błędy w swoim mikrokodzie lub też samodzielnie wyszukiwać takie błędy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W chipsetach Intela używanych od ostatnich pięciu lat istnieje dziura, która pozwala cyberprzestępcom na ominięcie zabezpieczeń i zainstalowanie szkodliwego kodu takiego jak keyloggery. Co gorsza, luki nie można całkowicie załatać.
      Jak poinformowała firma Positive Technologies, błąd jest zakodowany w pamięci ROM, z której komputer pobiera dane podczas startu. Występuje on na poziomie sprzętowym, nie można go usunąć. Pozwala za to na przeprowadzenie niezauważalnego ataku, na który narażone są miliony urządzeń.
      Na szczęście możliwości napastnika są dość mocno ograniczone. Przeprowadzenie skutecznego ataku wymaga bowiem bezpośredniego dostępu do komputera lub sieci lokalnej, w której się on znajduje. Ponadto przeszkodę stanowi też klucz kryptograficzny wewnątrz programowalnej pamięci OTP (one-time programable). Jednak jednostka inicjująca klucz szyfrujący jest również podatna na atak.
      Problem jest poważny, szczególnie zaś dotyczy przedsiębiorstw, które mogą być przez niego narażone na szpiegostwo przemysłowe. Jako, że błąd w ROM pozwala na przejęcie kontroli zanim jeszcze zabezpieczony zostanie sprzętowy mechanizm generowania klucza kryptograficznego i jako, że błędu tego nie można naprawić, sądzimy, że zdobycie tego klucza jest tylko kwestią czasu, stwierdzili przedstawiciele Positive Technologies.
      Błąd występuję w chipsetach Intela sprzedawanych w przeciągu ostatnich 5 lat. Wyjątkiem są najnowsze chipsety 10. generacji, w której został on poprawiony.
      Intel dowiedział się o dziurze jesienią ubiegłego roku. Przed kilkoma dniami firma opublikowała poprawkę, która rozwiązuje problem. Firma przyznaje, że programowe naprawienie dziury jest niemożliwe. Dlatego też poprawka działa poprzez poddanie kwarantannie wszystkich potencjalnych celów ataku.
      Dziura znajduje się w Converged Security Management Engine (CSME), który jest odpowiedzialny za bezpieczeństwo firmware'u we wszystkich maszynach wykorzystujących sprzęt Intela.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...