Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Najmłodsza czarna dziura w sąsiedztwie Ziemi

Rekomendowane odpowiedzi

NASA odkryła najmłodszą czarną dziurę w naszym sąsiedztwie. Widzimy ją w momencie, gdy miała zaledwie 30 lat i daje niepowtarzalną okazję do obserwowania rozwoju czarnej dziury od samych jej poczatków.

Czarna dziura jest to pozostałość po SN 1979C, supernowej znajdującej się w galaktyce M100, położonej w odległości około 50 milionów lat od Ziemi. Obiekt obserwowano w latach 1995-2007, a obecnie naukowcy, po interpretacji danych, doszli do wniosku, że mamy do czynienia z czarną dziurą.

Supernowa SN 1979C została odkryta w 1979 przez astronoma amatora. Jest ona pozostałością po gwieździe 20-krotnie cięższej od Słońca. W dalszej odległości od Ziemi odkryto wiele czarnych dziur, jednak ta, o której obecnie mowa, jest wyjątkowym obiektem. Znajduje się ona bowiem znacznie bliżej naszej planety niż inne czarne dziury i nie jest związana z rozbłyskiem gamma. Jak mówi Abraham Loeb z Harvard-Smithsonian Center for Astrophysics, tego typu czarne dziury trudno jest odkryć, gdyż można je zauważyć dopiero po wielu latach obserwacji za pomocą teleskopów działających na promienie X.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Oj z nazywaniem czegoś czarną dziurą należy bardzo uważać, szczególnie że np. ostatnio potwierdzono gwiazdę neutronową o masie 2 mas słońca - czyli znacznie powyżej granicy Chandrasekhara (1.43) od której wg standardowych teorii powinna się zapaść do czarnej dziury ...

http://physicsworld.com/cws/article/news/44209

SN 1979C została tak zaklasyfikowana na podstawie obserwacji promieniowania X, podczas gdy tak na prawdę standardowe teorie nie bardzo sobie radzą z wytłumaczeniem gamma burstów ...

Tak silne źródło energii można też wytłumaczyć na przykład uwzględniając rozpad protonów (a więc i neutronów):

- ta hipotetyczna reakcja jest niezbędna w wielu teoriach cząstek (np. supersymetrycznych),

- takie łamanie zachowania liczby barionowej jest raczej konieczne żeby w wielkim wybuchu mogło powstać więcej materii niż antymaterii,

- w teoriach czarnych dziur rozważa się promieniowanie Hawkinga, które ponoć musi być w postaci cząstek bezmasowych - czyli znowu zachowanie liczby barionowej raczej musi być łamane.

Uwzględniając taką reakcję - 'bezpiecznik' natury przed tworzeniem nieskończonej gęstości, neutrony/protony mogłyby być niszczone nie już po utworzeniu osobliwości (jak dla promieniowania Hawkinga), ale raczej tuż przed osiągnięciem nieskończonej gęstości masy/enegii - właśnie żeby mu zapobiec ... produkując olbrzymie ilości energii - np. dla gamma burstów czy promieniowania kosmicznego powyżej granicy GZK ...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

supernowej znajdującej się w galaktyce M100, położonej w odległości około 50 milionów lat od Ziemi.

 

Lat? Coś tu zjadło :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ponieważ ciężko się domyślić,strzelam: lat dżwiękowych?

 

Zły dzień? Czy Ty tak zawsze? Jak zjadło to zjadło, ja uprzejmie daję znać. Masz z tym problem to chociaż powstrzymaj się od kiepskiej jakości sarkastycznych komentarzy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ponieważ ciężko się domyślić,strzelam: lat dżwiękowych?

 

Jestem za! Wspaniała jednostka na zadania z fizyki, trzeba wziąć pod uwagę temperaturę, wilgotność, ciśnienie pewnie ciepła właściwe i Einstein wie co tam jeszcze. Można zajechać bachory...  ;D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W jednym z laboratoriów na Imperial College London odtworzono wirujący dysk plazmy, z tych, jakie otaczają czarne dziury i tworzące się gwiazdy. Eksperyment pozwala lepiej modelować procesy, zachodzące w takich dyskach, a naukowcy mają nadzieję, że dzięki temu dowiedzą się, jak rosną czarne dziury i powstają gwiazdy.
      Gdy materia zbliża się do czarnej dziury, jest rozgrzewana i staje się plazmą, czwartym stanem materii składającym się z naładowanych jonów i wolnych elektronów. Zaczyna też się obracać, tworząc dysk akrecyjny. W wyniku obrotu powstają siły odśrodkowe odrzucające plazmę na zewnątrz, jednak siły te równoważy grawitacja czarnej dziury.
      Naukowcy chcą poznać odpowiedź na pytanie, w jaki sposób czarna dziura rośnie, skoro materia – w formie plazmy – pozostaje na jej orbicie. Najbardziej rozpowszechniona teoria mówi, że niestabilności w polu magnetycznym plazmy prowadzą do pojawienia się tarcia, plazma traci energię i wpada do czarnej dziury.
      Dotychczas mechanizm ten badano za pomocą ciekłych wirujących metali. Za ich pomocą sprawdzano, co dzieje się, gdy pojawi się pole magnetyczne. Jednak metale te zamknięte są w rurach, co nie oddaje w pełni swobodnie poruszającej się plazmy.
      Doktor Vincente Valenzuela-Villaseca i jego zespół wykorzystali urządzenie Mega Ampere Generator for Plasma Implosion Experiments (MAGPIE) do stworzenia wirującego dysku plazmy. Za jego pomocą przyspieszyli osiem strumieni plazmy i doprowadzili do ich zderzenia, w wyniku czego powstała obracająca się kolumna plazmy. Odkryli, że im bliżej środka, tym plazma porusza się szybciej. To ważna cecha dysków akrecyjnych.
      MAGPIE generuje krótkie impulsy plazmy, przez co w utworzonym dysku dochodziło tylko do jednego obrotu. Jednak liczbę obrotów będzie można zwiększyć wydłużając czas trwania impulsów plazmy. Przy dłużej istniejących dyskach możliwe będzie też zastosowanie pól magnetycznych i zbadanie ich wpływu na plazmę. Zaczynamy badać dyski akrecyjne w nowy sposób, zarówno za pomocą Teleskopu Horyzontu Zdarzeń, jak i naszego eksperymentu. Pozwoli nam to przetestować różne teorie i sprawdzić, czy zgadzają się one z obserwacjami, mówi Valenzuela-Villaseca.
      Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Supermasywna czarna dziura, pędząca z prędkością 1 650 000 kilometrów na godzinę, przemieszcza się przez przestrzeń międzygalaktyczną, ciągnąc za sobą gigantyczny ogon gwiazd i materii gwiazdotwórczej. Niezwykły, jedyny taki znany nam obiekt, zauważył przypadkiem Teleskop Kosmiczny Hubble'a.
      Za czarną dziurą o masie 20 milionów mas Słońca podąża ogon z nowo narodzonych gwiazd. Ma on długość 200 000 lat świetlnych, jest więc dwukrotnie dłuższy niż średnica Drogi Mlecznej i rozciąga się od czarnej dziury, aż po jej galaktykę macierzystą, z której się wydostała. W ogonie musi znajdować się olbrzymia liczba nowo powstałych gwiazd, gdyż całość ma aż połowę jasności swojej galaktyki macierzystej.
      Astronomowie nie są oczywiście w stanie dostrzec samej czarnej dziury, ale widzą skutki jej oddziaływania. Widzą zatem długi ogon gwiazd i materii gwiazdotwórczej, na którego jednym końcu znajduje się oddalona od nas o 7,5 miliarda lat świetlnych galaktyka RCP 28, a na drugim wyjątkowo jasno świecący obszar. Naukowcy przypuszczają, że obszar ten to albo dysk akrecyjny wokół czarnej dziury, albo też gaz, który został podgrzany do wysokich temperatur przez wdzierającą się w niego, pędzącą z olbrzymią prędkością czarną dziurę. Gaz na czele czarnej dziury jest podgrzewany przez falę uderzeniową generowaną przez czarną dziurę pędzącą z prędkością ponaddźwiękową, mówi Pieter van Dokkum z Yale University.
      To był całkowity przypadek. Przyglądałem się obrazom z Hubble'a i zobaczyłem niewielką smużkę. Pomyślałem, że to promieniowanie kosmiczne wywołało zaburzenia obrazu. Jednak, gdy wyeliminowaliśmy promieniowanie kosmiczne, smużka nadal nam była. I nie wyglądała jak coś, co wcześniej widzieliśmy, dodaje van Dokkum.
      Naukowcy postanowili się bliżej przyjrzeć tajemniczemu zjawisku i wykorzystali spektroskop z W. M. Keck Observatories na Hawajach. Zobaczyli jasną strukturę i po badaniach doszli do wniosku, że została ona utworzona przez supermasywną czarną dziurę, która wydobyła się ze swojej galaktyki.
      Zdaniem van Dokkuma i jego zespołu, wyrzucenie czarnej dziury to skutek licznych kolizji. Do pierwszej z nich doszło około 50 milionów lat temu, gdy połączyły się dwie galaktyki. Ich supermasywne czarne dziury utworzyły układ podwójny i zaczęły wirować wokół siebie. Po jakimś czasie doszło do zderzenia z kolejną galaktyką. Ta również zawierała supermasywną czarną dziurę. Utworzył się niestabilny układ trzech czarnych dziur. Około 39 milionów lat temu jedna z nich przejęła część pędu z dwóch pozostałych i została wyrzucona z galaktyki.
      Gdy pojedyncza czarna dziura odleciała w jedną stronę, dwie pozostałe krążące wokół siebie czarne dziury zostały odrzucone w drugą stronę. Po przeciwnej stronie galaktyki naukowcy zauważyli bowiem coś, co może być oddalającym się układem dwóch czarnych dziur, a w samym centrum galaktyki nie zauważono obecności żadnej czarnej dziury.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzięki teleskopowi Gemini North na Hawajach udało się wykryć najbliższą Ziemi czarną dziurę. Obiekt Gaia BH1 ma masę 10-krotnie większą od Słońca i znajduje się w odległości 480 parseków (ok. 1560 lat świetlnych) od Ziemi w Gwiazdozbiorze Wężownika.
      Dziurę odkryto dzięki temu, że krąży wokół niej żółty karzeł typu widmowego G o masie 0,93 mas Słońca i metaliczności podobnej do słonecznej. Jest to więc gwiazda tego samego typu, co Słońce. Weź Układ Słoneczny, wsadź czarną dziurę tam, gdzie jest Słońce, a Słońce tam, gdzie jest Ziemia i masz obraz tego układu, wyjaśnia główny autor badań Kareem El-Badry, astrofizyk z Center for Astrophysics | Harvard & Smithsonian i Instytutu Astronomii im. Maksa Plancka. Okres orbitalny gwiazdy wokół Gai BH1 wynosi aż 185,6 ziemskich dni, jest więc dłuższy niż jakikolwiek znany nam okres orbitalny w podobnym układzie.
      Wielokrotnie ogłaszano odkrycie podobnych systemów, jednak niemal wszystkie te stwierdzenia zostały z czasem obalone. Tutaj mamy pierwsze jednoznaczne odkrycie w naszej galaktyce gwiazdy typu słonecznego na szerokiej orbicie wokół czarnej dziury o masie gwiazdowej, dodaje El-Badry.
      Obecne modele astronomiczne nie wą w stanie wyjaśnić, w jaki sposób mógł powstać taki system. Przede wszystkim dlatego, że skoro mamy czarną dziurę o masie 10-krotnie większej od masy Słońca, to musiała ona powstać z gwiazdy o masie co najmniej 20-krotnie większej od masy Słońca. To oznacza, że mogła ona istnieć zaledwie przez kilka milionów lat. Jeśli zaś obie gwiazdy – czyli ta, która zamieniła się w czarną dziurę i ta, która wokół niej krąży – powstały w tym samym czasie, to bardziej masywna z gwiazd na tyle szybko powinna zmienić się w czerwonego olbrzyma, pochłaniając towarzyszącą gwiazdę, że towarzyszka nie zdążyłaby wyewoluować do etapu gwiazdy ciągu głównego podobnej do Słońca. Nie wiadomo, jak towarzyszka czarnej dziury przetrwała etap czerwonego olbrzyma drugiej z gwiazd. Modele teoretyczne, które zakładają taką możliwość, mówią, że gwiazda o masie Słońca powinna znajdować się na znacznie ciaśniejszej orbicie wokół czarnej dziury.
      To oznacza, że w naszym rozumieniu tworzenia się i ewolucji czarnych dziur w układach podwójnych znajdują się spore luki, co sugeruje, że istnienie niezbadana dotychczas populacja czarnych dziur w takich układach.
      Trzeba tutaj przypomnieć, że rok temu poinformowano, iż wokół czerwonego olbrzyma V723 Mon, w odległości 460 parseków (ok.1500 lat świetlnych) od Ziemi, krąży najbliższa nam czarna dziura. Po jakimś czasie okazało się, że w układzie tym nie ma czarnej dziury.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Reintrodukcja bobrów, niedźwiedzi czy żubrów znacząco poprawiłaby stan światowych ekosystemów. Zamówiony przez ONZ raport wykazał, że przywrócenie dużych ssaków może pomóc w walce z ociepleniem klimatu, poprawi stan zdrowia ekosystemów i przywróci bioróżnorodność. By osiągnąć ten cel w skali świata wystarczy reintrodukcja zaledwie 20 gatunków, których historyczne zasięgi zostały dramatycznie zredukowane przez człowieka.
      Jeśli pozwolimy powrócić tym zwierzętom, to dzięki ich obecności pojawią się warunki, które z czasem spowodują, że gatunki te pojawią się na 1/4 powierzchni planety, a to z kolei rozszerzy zasięgi innych gatunków i odbuduje ekosystemy, dzięki czemu zwiększy się ich zdolność do wychwytywania i uwięzienia węgla atmosferycznego.
      Przywracanie gatunków nie jest jednak proste. Pojawia się bowiem zarówno pytanie, który z historycznych zasięgów gatunku należy uznać za pożądany. Niektórzy obawiają się też reintrodukcji dużych drapieżników, jak np. wilki, twierdząc, że niesie to ze sobą zagrożenie dla ludzi i zwierząt hodowlanych. Badania pokazują jednak, że duże drapieżniki, wpływając na roślinożerców, doprowadzają do zwiększenia zarówno pokrywy roślinnej, jak i innych gatunków. Z kolei przywracanie historycznych zasięgów roślinożerców powoduje, że roznoszą oni nasiona, pomagają w obiegu składników odżywczych oraz zmniejszają zagrożenie pożarowe poprzez wyjadanie roślinności.
      Autorzy najnowszych badań postanowili sprawdzić, gdzie przywrócenie dużych ssaków przyniosłoby największe korzyści i w jaki sposób można to osiągnąć. Okazało się, że wystarczy reintrodukcja 20 gatunków – 13 roślinożerców i 7 drapieżników – by na całej planecie odrodziła się bioróżnorodność. Te 20 gatunków to niewiele jak na 298 gatunków dużych ssaków żyjących na Ziemi.
      Badania wykazały, że obecnie jedynie w 6% obszarów zasięg dużych ssaków jest taki, jak przed 500 laty. Okazuje się również, że tylko w odniesieniu do 16% planety można stwierdzić, że znajdują się tam gatunki ssaków, na których zasięg nie mieliśmy większego wpływu.
      Naukowcy przyjrzeli się następnie poszczególnym regionom, by określić, ile pracy trzeba włożyć, by przywrócić w nich bioróżnorodnośc. Okazało się, że w większości Azji północnej, północnej Kanady oraz w częściach Ameryki Południowej i Afryki wystarczyłoby wprowadzić jedynie po kilka gatunków dużych ssaków, by przywrócić bioróżnorodność z przeszłości.
      I tak Europie przywrócenie bobra, wilka, rysia, renifera i żubra pozwoliłoby na powrót bioróżnorodności w 35 regionach, w których gatunki te zostały wytępione. Podobnie jest w Afryce, gdzie reintrodukcja hipopotama, lwa, sasebiego właściwego, likaona i geparda doprowadziłaby do dwukrotnego zwiększenia obszarów o zdrowej populacji ssaków w 50 ekoregionach. W Azji, po reintrodukcji tarpana dzikiego oraz wilka w Himalajach doszłoby do zwiększenia zasięgów zdrowych populacji o 89% w 10 ekoregionach. Z kolei w Ameryce Północnej do znacznego poprawienia stanu ekosystemów wystarczyłaby reintrodukcja niedźwiedzia brunatnego, bizona, rosomaka oraz niedźwiedzia czarnego.
      Reintrodukcja gatunków miałaby olbrzymie znaczenie nie tylko dla ekosystemu, ale i dla uratowania ich samych. Na przykład jednym ze zidentyfikowanych 20 kluczowych gatunków jest gazelka płocha, występująca na Saharze. Obecnie to gatunek krytycznie zagrożony, na świecie pozostało zaledwie około 200–300 osobników. Największym zagrożeniem dla niej są zaś działania człowieka – polowania i utrata habitatów.
      Przywrócenie wielu ze wspomnianych gatunków nie będzie jednak proste. Trzeba by np. zabronić polowań na nie i zapobiegać dalszej utracie habitatu. Ponadto wiele z ekoregionów poprzedzielanych jest granicami państwowymi, więc przywracanie gatunków i bioróżnorodności wymagałoby współpracy międzynarodowej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Historia naszej planety, to historia 4,5 miliarda lat schładzania się. Dzięki temu, że Ziemia stygnie, uformowała się jej sztywna skorupa i mogło powstać życie. Jednocześnie dzięki temu, że nie wystygła, istnieją takie procesy jak tektonika płyt i wulkanizm. Gdy wnętrze planety wystygnie, te kluczowe procesy zatrzymają się. Nie wiemy jednak, jak szybko nasza planeta się wychładza i kiedy procesy przebiegające w jej wnętrzu zatrzymają się.
      Odpowiedzią na te pytania może dać zbadanie przewodnictwa cieplnego minerałów znajdujących się na granicy między jądrem a płaszczem Ziemi. To bardzo ważne miejsce, w którym lepkie skały mają bezpośredni kontakt z płynnym zbudowanym głównie z niklu i żelaza zewnętrznym jądrem. Gradient temperatury pomiędzy jądrem zewnętrznym a płaszczem jest bardzo duży, zatem potencjalnie może tam przepływać sporo ciepła. Warstwa graniczna zbudowana jest głownie z bridgmanitu.
      Profesor Motohiko Murakami ze Szwajcarskiego Instytutu Technologicznego w Zurichuy (ETH Zurich) wraz z naukowcami z Carnegie Institute for Science opracowali złożony system pomiarowy, który pozwolił im na wykonanie w laboratorium oceny przewodnictwa cieplnego bridgmanitu w warunkach ciśnienia i temperatury, jakie panują we wnętrzu Ziemi. Wykorzystali przy tym niedawno opracowaną technikę optycznego pomiaru absorpcji diamentu podgrzewanego impulsami laserowymi.
      Dzięki tej nowej technice wykazaliśmy, że przewodnictwo cieplne bridgmanitu jest około 1,5-razy większe niż się przyjmuje, mówi profesor Murakami. To zaś wskazuje, że przepływ ciepła pomiędzy jądrem a płaszczem jest większy. A większy przepływ ciepła oznacza, że konwekcja w płaszczu zachodzi szybciej i Ziemia szybciej się ochładza. Tektonika płyt może więc w rzeczywistości spowalniać szybciej, niż się obecnie przyjmuje.
      Grupa Murakami wykazała jednocześnie, że szybsze wychładzanie się płaszcza zmieni fazy minerałów na granicy jądra i płaszcza. Schładzający się bridgmanit zmieni się w minerał, który będzie jeszcze efektywniej przewodził ciepło, zatem stygnięcie Ziemi jeszcze bardziej przyspieszy.
      Wyniki naszych badań rzucają nowe światło na ewolucję dynamiki Ziemi. Wskazują, że Ziemia, podobnie jak Merkury czy Mars, schładza się szybciej i stanie się szybciej nieaktywna, wyjaśnia Murakami.
      Trudno jednak powiedzieć, ile czasu minie zanim ruchy konwekcyjne w płaszczu ustaną. Wciąż wiemy zbyt mało, by określić, kiedy do tego dojdzie, przyznają naukowcy. Żeby się tego dowiedzieć, uczeni muszą najpierw lepiej rozpoznać w czasie i przestrzeni procesy konwekcyjne w płaszczu. Ponadto muszą wiedzieć, jak rozpad pierwiastków radioaktywnych we wnętrzu Ziemi, który jest jednym z głównych źródeł ciepła, wpływa na dynamikę procesów płaszcza.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...