Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Niezależny audyt wykazał, że James Webb Space Telescope (JWST), który ma być następcą teleskopu Hubble'a, będzie kosztował około 1,4 miliarda USD więcej, niż wcześniej zakładano. Ponadto w przestrzeń kosmiczną trafi on co najmniej rok później, niż planowano.

Audytu dokonała siedmioosobowa komisja powołana z inicjatywy senator Barbary Mikulski. Teraz już wiadomo, że budżet przedstawiony w 2008 roku kierownictwu NASA przez zespół odpowiedzialny za Teleskop Webba został źle skonstruowany, a rezerwowe fundusze, jakie przeznaczono później na nadmiarowe wydatki, nie wystarczą.

Audytu dokonała komisja pracująca pod kierownictwem Johna Casaniego z NASA Jet Propulion Laboratory. Stwierdziła ona, że błędy popełnił zarówno zespół pracujący nad Teleskopem, jak i kierownictwo NASA. Komisja próbowała odpowiedzieć na pytanie, jaki będzie najmniejszy koszt budowy i najwcześniejsza data wystrzelenia urządzenia w przestrzeń kosmiczną. Stwierdzono, że JWST będzie kosztował 6,5 miliarda dolarów (pierwotny budżet zakładał wydatki rzędu 5,1 miliarda) i trafi w przestrzeń kosmiczną nie wcześniej niż we wrześniu 2015 roku (poprzednio mówiono o czerwcu 2014). Żeby jednak wypełnić te założenia finansowanie w roku podatkowym 2011 i 2012 musi być znacząco wyższe niż to, które przedstawiono w prezydenckim budżecie. Kongres musiałby się zgodzić na wydanie dodatkowo po 250 milionów dolarów w roku 2011 i 2012. To oznacza, że z przyczyn politycznych i ekonomicznych budowa Teleskopu może jeszcze bardziej się opóźnić.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Dzisiaj pomiędzy godziną 13:20 a 13:52 czasu polskiego ma odbyć się start rakiety Ariane 5, która wyniesie Teleskop Kosmiczny Jamesa Webba (JWST). Będzie to największy w historii i najważniejszy od 31 lat, od czasu wystrzelenia Teleskopu Hubble'a, instrument naukowy umieszczony przez człowieka w przestrzeni kosmicznej. Wbrew powszechnemu mniemaniu Teleskop Webba nie ma zastąpić Hubble'a, a go uzupełnić. Naukowcy na całym świecie wiążą olbrzymie oczekiwania z obserwatorium, w którego powstanie – obok NASA – zaangażowane są Europejska Agencja Kosmiczna i Kanadyjska Agencja Kosmiczna.
      Start niezwykłego teleskopu można śledzić na żywo na kanale NASA na YouTube
      Jak to się zaczęło...
      NASA myślała o tym, co po Hubble'u jeszcze zanim teleskop ten trafił w przestrzeń kosmiczną. Podobnie zresztą jest i teraz, gdyż opracowywane są koncepcje kolejnych po JWST teleskopów kosmicznych. Wkrótce po wystrzeleniu Hubble'a okazało się, że instrument nie pracuje jak powinien. Przyspieszono więc planowanie kolejnego teleskopu kosmicznego. Później odbyła się słynna misja naprawcza do Hubble'a, a gdy teleskop dostarczył pierwszych zdjęć po naprawie, wszyscy oniemieliśmy. Zachwycone były i opinia publiczna, i międzynarodowa społeczność naukowa, i NASA. Na bazie tego sukcesu i powszechnego entuzjazmu NASA i współpracujący z nią specjaliści zaczęli opracowywać koncepcję teleskopu pracującego w podczerwieni. Taki teleskop mógłby zajrzeć w przestrzeń kosmiczną znacznie dalej niż Hubble. Mógłby zobaczyć światło pierwszych galaktyk. Pracujący głównie w świetle widzialnym Hubble nie ma takich możliwości, gdyż – jako „gorący” teleskop – jest oślepiany ciepłem generowanym przez własne instrumenty naukowe. Teleskop działający głównie w podczerwieni musi zaś być teleskopem „zimnym”.
      Początki koncepcji JWST sięgają 1996 roku. Wówczas projekt był nazywany Next Generation Space Telescope. W 2002 roku, na kolejnym etapie rozwoju, przemianowano go na Teleskop Kosmiczny Jamesa Webba (James Webb Space Telescope), od nazwiska drugiego dyrektora NASA, który zarządzał agencją w czasie programu Apollo i za którego kadencji działalność naukowa stała się główną działalnością NASA.
      Jeszcze na początku 2005 roku planowano, że JWST zostanie wystrzelony w 2011 roku. Jednak w sierpniu 2005 dokonano rewizji planów, wyznaczono datę startu na rok 2013, a koszty oszacowano na 4,5 miliarda USD, z czego 3,5 miliarda miały pochłonąć prace projektowo-badawcze, budowa teleskopu i jego wystrzelenie, a kolejny 1 miliard do koszt jego 10-letniej pracy na orbicie.
      W roku 2010 uznano, że JWST zostanie wystrzelony w 2015 roku, z możliwością przesunięcia startu na nie później niż rok 2018. Trzy lata później wiedziano już, że całkowity koszt teleskopu i jego misji wyniesie co najmniej 8,8 miliarda USD.
      Ostatni element JWST został wyprodukowany w listopadzie 2016 roku. Rozpoczęto intensywne testy. W marcu 2018 podczas próbnego montażu doszło do rozdarcia osłony przeciwsłonecznej teleskopu, okazało się też, że jej konstrukcja nie jest wystarczająco mocna. Start przesunięto na rok 2020. Jednak już w czerwcu 2018 roku powołana przez NASA Independent Review Board, której celem była ocena postępów prac nad teleskopem, zaleciła przesunięci startu na 30 czerwca 2021. W swoim raporcie IRB stwierdzała, że że 29-miesięczne opóźnienie pomiędzy październikiem 2018 a marcem 2021 wynika z pięciu czynników: ludzkich błędów, problemów niejako automatycznie wbudowanych w taki projekt, złożoność systemu, zbytni optymizm oraz brak doświadczenia w kluczowych obszarach, takich jak np. budowa osłony przed Słońcem.
      Wśród najważniejszych błędów popełnionych przez ludzi wymieniono m.in. umycie zaworów niewłaściwym rozpuszczalnikiem, błędy w uzwojeniu przetworników ciśnieniowych oraz niewłaściwe zainstalowanie elementów montażowych osłony słonecznej przed jej kluczowym testem. Wszystkie tego typu drobne błędy spowodowały opóźnienie o 1,5 roku i zwiększyły koszty o około 600 milionów dolarów.
      Cały teleskop został ostatecznie złożony 29 sierpnia 2019 roku. Wcześniej licznym wymagającym testom były poddawane jego poszczególne elementy. Po złożeniu czekały go kolejne testy. W końcu 21 grudnia 2020 roku osłona termiczna, co do której było najwięcej zastrzeżeń, przeszła ostatnie testy pełnego rozwinięcia i zwinięcia, a w marcu bieżącego roku zakończono ostatnie testy układów elektrycznych i komunikacyjnych. Pod koniec września JWST wyruszył w dwutygodniową drogę do Gujany Francuskiej, skąd zostanie wystrzelony. Ostateczny budżet JWST to niemal 10 miliardów dolarów.
      Zadania
      Główne obszary badawcze, którymi zajmie się Webb można podzielić na cztery kategorie:
      Koniec wieków ciemnych: pierwsze światło i epoka rejonizacji
      Przez około 380 000 lat po Wielkim Wybuchu wszechświat był całkowicie nieprzezroczysty. Tworzyła go mieszanina gorących cząstek. W miarę jak się schładzał protony i neutrony zaczęły łączyć się w zjonizowane atomy wodoru oraz nieco helu. Atomy te zaczęły przyciągać elektrony. Wszechświat stał się przezroczysty i światło mogło w nim swobodnie się przemieszczać. A raczej mogłoby, gdyby istniały jakieś jego źródła. Obecnie nie wiemy jak wyglądały pierwsze gwiazdy, ani kiedy powstały. To jedne z pytań, na które ma odpowiedzieć Webb.
      I właśnie dlatego, że chcemy zobaczyć pierwsze gwiazdy, JWST musi pracować w podczerwieni. Rozszerzanie się wszechświata powoduje, że zwiększa się odległość między obiektami. A im większa odległość dzieli źródło fali (np. gwiazdę) od jej odbiorcy, tym bardziej zwiększa się długość fali docierającej do odbiorcy. W przypadku światła mamy do czynienia ze zjawiskiem przesunięcia ku podczerwieni, gdyż podczerwień ma większą długość fali niż światło widzialne. Im dalej od nas w przestrzeni kosmicznej znajduje się świecący obiekt, tym bardziej czerwony się wydaje. Podobne zjawisko łatwo możemy zaobserwować na Ziemi odnośnie dźwięku. Wystarczy, że wsłuchamy się w syrenę jadącej w naszym kierunku karetki i zwrócimy uwagę, jak dźwięk zmienia się, gdy pojazd się do nas zbliża oraz gdy nas minie i się oddala.
      Aby znaleźć pierwsze galaktyki Webb będzie musiał przeprowadzić badania w bliskiej podczerwieni, za którymi pójdą spektroskopia o niskiej rozdzielczości i fotometria w średniej podczerwieni. Do przyjrzenia się epoce rejonizacji konieczna będzie zaś wysokorozdzielcza spektroskopia w bliskiej podczerwieni.
      Zanim jednak doszło do rejonizacji, nastąpiła era rekombinacji. Trwała ona od 240 do 300 tysięcy lat po Wielkim Wybuchu. Wtedy to protony i neutrony zaczęły łączyć się w zjonizowane atomy wodoru i deuteru. Deuter utworzył później hel-4. Pierwiastki te zaczęły przyciągać elektrony, które uczyniły z nich obojętne atomy. W tym momencie wszechświat składał się z 3-krotnie większej ilości wodoru niż helu. I stał się przezroczysty. Epoka rekombinacji to najwcześniejszy okres istnienia wszechświata, który może obserwować za pomocą jakiejkolwiek formy światła. Satelity COBE i WAMP rejestrują obecnie mikrofalowe promieniowanie tła z tego okresu. Po epoce rekombinacji nastąpiły wieki ciemne, które zakończyła epoka rejonizacji.
      Wedle obowiązujących obecnie teorii pierwsze gwiazdy były od 30 do 300 razy bardziej masywne od Słońca, istniały zaledwie kilka milionów lat, a ich żywot kończył się eksplozją supernowej. Potężne promieniowanie ultrafioletowe z tych pierwszych gwiazd jonizowało wodór wypełniających wszechświat. Epoka ta miała kluczowe znaczenie dla późniejszego formowania się większych obiektów, jak galaktyki. Dlatego też naukowcy chcieliby przyjrzeć się pierwszym gwiazdom, by lepiej zrozumieć, ja powstał wszechświat znany nam obecnie. Ponadto pierwsze gwiazdy mogły też tworzyć pierwsze czarne dziury. Te czarne dziury mogły z czasem wchłaniać materię i łączyć się ze sobą, tworząc supermasywne czarne dziury, obecnie w centrum niemal wszystkich masywnych galaktyk.
      Tworzenie się galaktyk
      Aby zrozumieć naturę i historię wszechświata, musimy zrozumieć jak zorganizowana jest w nim materia i jak organizacja ta zmieniała się przez miliardy lat. Naukowcy badają to zagadnienie zarówno w skali galaktyk, jak i cząstek subatomowych. Każda z tych skal niesie ze sobą niezwykle istotne informacje.
      Zachwycając się pięknymi zdjęciami wykonanymi przez Hubble'a musimy pamiętać, że galaktyki i inne struktury w przestrzeni kosmiczne nie zawsze wyglądały w ten sposób. Wielkie galaktyki spiralne tworzyły się przez miliardy lat w różnych złożonych procesach, również zderzając się między sobą i się łącząc. Podobne zjawiska zachodziły w przypadku olbrzymich galaktyk eliptycznych.
      Gdy jednak spojrzymy głęboko w przestrzeń kosmiczną zobaczymy zupełnie inny obraz. Obecnie naukowcy sądzą, że od czasu, gdy wszechświat ukończył 6 miliardów lat, niemal wszystkie masywne galaktyki doświadczyły przynajmniej jednego znaczącego połączenia się z inną galaktyką. Dlatego też gdy zajrzymy dalej w czasie zobaczymy wiele małych galaktyk „posklejanych” z jeszcze mniejszych elementów z wieloma obszarami gwiazdotwórczymi. JWST ma pomóc w odpowiedzi na pytanie, jak z takich niedużych zlepków galaktycznych, powstały dzisiejsze imponujące rozmiarami i wyglądem struktury. Teleskop Webba ma zobaczyć pierwsze galaktyki, dzięki czemu naukowcy mają nadzieję dowiedzieć się jak galaktyki rosły i ewoluowały. Zobaczą też, jak wyglądały pierwsze gwiazdy i poznają ich rodzaje. A dzięki tym obserwacjom dowiemy się, jak powstawały pierwiastki cięższe niż wodór i hel.
      Współczesne modele komputerowe wskazują, że do tworzenia się galaktyk dochodzi, gdy łączy się ze sobą ciemna materia. To niewidzialna forma materii, której masa we wszechświecie jest pięciokrotnie większa niż materii widzialnej. To ona tworzy „rusztowanie” wszechświata. Sposób, w jaki łączy się ona ze sobą wpływa na formowanie się widocznych struktur w kosmosie. A większe struktury z widocznej materii wpływają z kolei na powstawanie i ewolucję gwiazd. Naukowcy uważają, że to interakcja pomiędzy gwiazdami, galaktykami a ciemną materią stworzyła wszechświat w takiej formie, w jakiej go obecnie widzimy.
      Ewolucja i formowanie się galaktyk trwają do dzisiaj. Znamy wiele przykładów zderzających się galaktyk. Wiemy też, że taka kolizja czeka w przyszłości Drogę Mleczną. W naszym kierunku zbliża się bowiem galaktyka Andromedy i za miliardy lat dojdzie do zderzenia.
      Narodziny gwiazd i układów protoplanetarnych
      Jednym z najbardziej spektakularnych zdjęć wykonanych przez Hubble'a jest fotografia Filarów Stworzenia. W Filarach znajdują się gwiazdy, które nie na wszystkich zdjęciach są widoczne. Teleskop Hubble'a jest bowiem zoptymalizowany pod kątem pracy w świetle widzialnym, a światło to jest blokowane przez pył tworzący filary. Dopiero gdy pracuje w trybie bliskiej podczerwieni, możemy dostrzec gwiazdy ukryte w pyle.  Obecnie możemy sobie tylko wyobrażać, jak wspaniałe zdjęcie Filarów wykona Webb, który jest wyspecjalizowany w pracy w bliskiej podczerwieni i jest 100-krotnie potężniejszy niż Hubble.
      Webb, dzięki temu, że pracuje w podczerwieni, rejestrując ciepło emitowane z różnych źródeł, pokaże nam to, co obecnie ukryte jest przed naszym wzrokiem za chmurami pyłu. Dostarczy też lepszych obrazów dysków protoplanetarnych, chmur gazu i pyłu wokół młodych gwiazd. Chmur, w których formują się planety. Teleskop ten jest tak potężny, że powinien pokazać i proces tworzenia się planet i pozwoli obserwować molekuły niezbędne do powstania życia.
      Ludzkość obserwuje i bada gwiazdy od tysięcy lat. Jednak dopiero w ostatnich dziesięcioleciach zaczęliśmy poznawać wiele z ich tajemnic. Jeszcze 100 lat temu nie wiedzieliśmy, że w gwiazdach zachodzi fuzja jądrowa, a o tym, że we wszechświecie ciągle powstają nowe gwiazdy przekonaliśmy się mniej niż 50 lat temu. Wciąż nie wiemy, w jaki sposób chmury pyłu i gazu stają się gwiazdami, nie wiemy, dlaczego większość gwiazd powstaje w obszarach gwiazdotwórczych, ani jak dokładnie tworzą się układy planetarne. Chcielibyśmy dokładnie poznać proces tworzenia się cięższych niż wodór czy hel pierwiastków. Kolejne obserwacje gwiazd i planet udoskonalają naszą wiedzę, pozwalają naukowcom zmieniać, poprawiać i tworzyć nowe hipotezy oraz teorie. Jednak, żeby naprawdę zrozumieć w jaki sposób powstały planety czy gwiazdy, potrzebujemy większej liczby dokładniejszych obserwacji tych obiektów na różnych etapach ich ewolucji. Przede wszystkim zaś potrzebujemy obserwacji młodych gwiazd i dopiero tworzących się układów planetarnych.
      Układy planetarne i początki życia
      Dotychczas odkryliśmy tysiące planet poza Układem Słonecznym, a dzięki rozwijającej się wiedzy i coraz lepszej technice, naukowcy potrafią znajdować coraz mniejsze planety, coraz bardziej podobne do Ziemi. Okazało się, że wszechświat jest pełen planet.
      Do zrozumienia Ziemi i życia potrzebna nam jest wiedza o powstawaniu i ewolucji planet. Wciąż nie wiemy, czy wszystkie planety w układach planetarnych formują się w miejscach, w których je widzimy, czy też powstają na obrzeżach układów i z czasem przemieszczają się bliżej gwiazdy. Nie wiemy, w jaki sposób osiągają ostateczną orbitę,ani jak wielkie planety wpływają na te mniejsze. W Układzie Słonecznym są pozostałości po czasach, gdy się on formował. Teleskop Webba pozwoli nam obserwować układy planetarne znacznie młodsze od naszego, dzięki temu będziemy mogli porównać to, co widać tam, z tym, co widzimy tutaj.
      Zbadamy skład dysków protoplanetarnych, będziemy mogli bezpośrednio porównać warunki panujące w różnych układach.
      Jednym z głównych zadań Teleskopu Kosmicznego Jamesa Webba będzie badanie atmosfer planet pozasłonecznych. Webb będzie szukał w nich sygnatur elementów potrzebnych do istnienia życia. Wykorzysta w tym celu spektroskopię, technikę pomiaru intensywności światła o różnych długościach fali.
      Gdy planeta przechodzi na tle swojej gwiazdy, światło gwiazdy przenika przez jej atmosferę. Różne pierwiastki w różny sposób reagują na światło, absorbując fotony o konkretnej energii. Badając całe spektrum światła i znajdując miejsca, w których doszło do absorpcji fotonów, naukowcy są w stanie określi pierwiastki obecne w atmosferze, zatem zbadać jej budowę. A jako, że w podczerwieni można zaobserwować najwięcej takich specjalnych cech spektrum światła, JWST świetnie nadaje się do obserwacji tego typu. Ostatecznym celem jest znalezienie planety o atmosferze podobnej do ziemskiej.
      Jednak Webb nie ma badać wyłącznie egzoplanet, gwiazd i galaktyk. Naukowcy chcą dzięki niemu dowiedzieć się więcej o samym Układzie Słonecznym. Dlatego też teleskop będzie obserwował Marsa i wielkie planety, pomoże w badaniach Plutona, Eris, asteroid, komet czy obiektów z Pasa Kuipera. Pozwoli na zweryfikowanie i poszerzenie naszej wiedzy, którą zdobyliśmy dotychczas dzięki marsjańskim łazikom czy sondom wysyłanym w dalekie zakątki Układu Słonecznego.
      Jak on to zrobi
      Teleskop Kosmiczny Jamesa Webba zbudowany jest z trzech zasadniczych elementów: Integrated Science Instrument Module (ISIM, Zintegrowany Moduł Instrumentów Naukowych), Optical Telescope Element (OTE, Element Optyczny Teleskopu) oraz Spacecraft Element (platforma nośna) na który składają się pojazd kosmiczny i osłona przeciwsłoneczna. W ISIM znajdują się cztery instrumenty naukowe Webba. Dane dla nich zapewniają „oczy” teleskopu czyli OTE. Osłona przeciwsłoneczna ma odseparować „gorącą” stronę Teleskopu czyli całą platformę nośną, która będzie skierowana w stronę Słońca, od strony „zimnej” czyli OTE i ISIM. Zadaniem osłony przeciwsłonecznej będzie zapewnienie jak najniższej temperatury pracy elementów optycznych i naukowych. Dlatego też ochroni je ona nie tylko od ciepła słonecznego, ale również od ciepła Ziemi i ciepła generowanego przez pojazd kosmiczny. Temperatura pracy OTE i ISIM nie może być wyższa niż -223,15 stopni Celsjusza.
      W samym zaś pojeździe kosmicznym znajdują się podzespoły zasilania, kontroli położenia, komunikacji, napędu, kontroli termicznej oraz dowodzenia i danych.
      Na moduł naukowy ISIM składają się:
      - NIRCam, działająca w podczerwieni kamera, rejestrująca fale o długości od 0,6 do 5 mikrometrów. To ona zarejestruje światło z pierwszych gwiazd i galaktyk, pokaże gwiazdy w pobliskich galaktykach, młode gwiazdy w Drodze Mlecznej oraz obiekty w Pasie Kuipera. Wyposażono ją w koronografy, instrumenty pozwalające na fotografowanie bardzo słabo świecących obiektów znajdujących się wokół obiektów znacznie jaśniejszych. Koronografy blokują światło jasnego obiektu, uwidaczniając obiekty słabo świecące. Dzięki nim astronomowie chcą dokładnie obserwować planety krążące wokół pobliskich gwiazd i poznać ich charakterystyki. NIRCam wyposażono w dziesięć rtęciowo-kadmowo-telurkowych, które są odpowiednikami matryc CCD ze znanych nam aparatów cyfrowych.
      - NIRSpec to spektrograf również działający w zakresie od 0,6 do 5 mikrometrów. Spektrografy to urządzenia do rejestracji całego widma promieniowania. Analiza tego widma pozwoli naukowcom poznać wiele cech fizycznych badanego obiektu, w tym jego temperaturę, masę i skład chemiczny. Wiele z obiektów, które Webb będzie badał, jest tak słabo widocznych, że olbrzymie zwierciadło teleskopu będzie musiało prowadzić obserwacje przez setki godzin, by zebrać ilość światła wystarczającą do stworzenia całego widma. Jako, że w czasie swojej podstawowej misji, przewidzianej na 5 lat, Webb ma zbadać tysiące galaktyk, NIRSpec wyposażono w możliwość jednoczesnej obserwacji 100 obiektów. To pierwszy spektrograf o tak szerokich możliwościach wysłany w przestrzeń kosmiczną. NIRSpec wykorzystuje system mikroelektromechaniczny zwany macierzą mikromigawek. Składa się ona z wielu komórek, każda o średnicy ludzkiego włosa, których przesłony kontrolowane są indywidualnie pod wpływem pola magnetycznego. Można zatem dowolnie otwierać lub blokować widok na konkretny fragment obserwowanego nieboskłonu. Dzięki temu NIRSpec ma podobne możliwości do NIRCam, również może blokować światło z jaśniejszego obiektu, by obserwować znajdujący się obok obiekt słabiej świecący.
      - Mid-Infared Instrument (MIRI) składa się zarówno z kamery jak i spektrografu pracujących w średniej podczerwieni. To zakresy od 5 do 28 mikrometrów. Fal o takiej długości nasze oczy nie widzą. Ten bardzo czuły instrument zobaczy przesunięte ku czerwieni światło odległych galaktyk, tworzących się gwiazd i słabo widocznych komet. Będzie też mógł obserwować Pas Kuipera. Kamer MIRI będzie zdolna do wykonania podobnych szerokokątnych zdjęć, z jakich zasłynął Hubble. A jego spektrograf umożliwi poznanie wielu cech fizycznych odległych obiektów. MIRI korzysta z trzech macierzy czujników zbudowanych z krzemu wzbogaconych arsenem. MIRI, by ujawnić swoje niezwykłe możliwości, musi mieć zapewnioną temperaturę -266,15 stopni Celsjusza. Tutaj już nie wystarczy chłodzenie pasywne w postaci przestrzeni kosmicznej i zaawansowanej osłony termicznej. Potrzebne jest chłodzenie aktywne, za które odpowiada innowacyjny dwustopniowy układ, schładzający czujniki MIRI najpierw do -255,15, a następnie do -266,15 stopni Celsjusza. W budowę tego instrumentu brało udział europejskie konsorcjum z Europejską Agencją Kosmiczną.
      - Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph (FGS/NIRISS) dostarczony przez Kanadyjską Agencję Kosmiczną to instrument odpowiedzialny za precyzyjne pozycjonowanie Webba na wybrane obiekty, dzięki czemu teleskop będzie mógł uzyskać obrazy wysokiej jakości. FGS/NIRISS będzie odpowiedzialny za wykrycie pierwszego światła, jakie rozbłysło we wszechświecie, wykrywanie i charakteryzację egzoplanet oraz spektroskopię planet podczas ich tranzytów na tle gwiazd macierzystych.
      Oczami teleskopu jest OTE. To właśnie ten element będzie zbierał światło i dostarczał je do instrumentów naukowych. Najbardziej rzucającą się w oczy jego częścią jest główne zwierciadło o średnicy 6,5 metra, zbudowane z 18 heksagonalnych segmentów. Budowa tak wielkiego lustra nawet do użycia na Ziemi to poważne wyzwanie, a co co dopiero w przestrzeni kosmicznej. Nigdy wcześniej ludzkość nie wysłała w kosmos tak dużego zwierciadła.
      Lustro Hubble'a miało 2,4 metra średnicy. Gdyby po prostu przeskalować je do rozmiarów zwierciadła Webba, byłoby ono zbyt ciężkie, by można było je wystrzelić. Dlatego też inżynierowie musieli znaleźć inny sposób. I znaleźli. Zwierciadło Webba jest aż 10-krotnie lżejsze od zwierciadła Hubble'a w przeliczeniu na daną jednostkę powierzchni, a przy tym niezwykle wytrzymałe. Każdy z jego segmentów ma średnicę 1,32 metra i waży około 20 kilogramów, a wraz z aktuatorami i elementami montażowymi waga ta wynosi około 40 kg. Zwierciadło jest składane, gdyż musi zmieścić się do rakiety nośnej.
      Inżynierowie doszli do wniosku, że najlepszym kształtem segmentów będzie sześciokąt. Pozwala on bowiem na rozłożenie lustra bez występowania odstępów pomiędzy nimi oraz uzyskanie kształtu jak najbardziej zbliżonego do koła, dzięki czemu zebrane światło zostanie skupione w centralnym regionie, będzie mogło trafić do zwierciadła wtórnego o średnicy 0,74 m. Gdyby segmenty były okrągłe, po rozłożeniu powstałyby odstępy między nimi, a kwadratowe segmenty dałyby kwadratowe lustro i zbyt wiele zebranego światła trafiałoby poza obszar centralny.
      W przestrzeni kosmicznej zwierciadło trzeba będzie precyzyjnie nakierowywać na obserwowane niezwykle odległe obiekty. Każdy z segmentów zwierciadła głównego oraz lustro wtórne jest sterowany przez sześć aktuatorów. Działają one tak precyzyjnie, że odchylenie od zaplanowanego ustawienia segmentów wynosi nie więcej niż 1/10 000 grubości ludzkiego włosa.
      Webb to teleskop trójzwierciadłowy. Lustro główne jest wklęsłe, zbierające zeń światło lustro wtórne jest wypukłe, a nieruchome trzecie lustro odpowiada za korygowanie wszelkich zniekształceń obrazu powodowanych przez dwa pierwsze lustra.
      Zwierciadła Webba wykonano z lekkiego i wytrzymałego berylu. Materiał wybrany ze względu na swoją olbrzymią stabilność w bardzo niskich temperaturach. Nie odkształca się, co ma olbrzymie znaczenie dla jakość przekazywanego obrazu. Jako, że beryl słabo odbija światło podczerwone, lustra zostały pokryte niezwykle cienką warstwą złota, co nadaje Webbowi jego charakterystyczny wygląd. Beryl jest też niezwykle wytrzymały w stosunku do swojej wagi, jest dobrym przewodnikiem ciepła i prądu elektrycznego, a jednocześnie nie ma właściwości magnetycznych.
      Ochrona przed ciepłem
      Jako, że JWST będzie pracował głównie w podczerwieni, jego wrogiem są wszelkie źródła ciepła. Oczywiście oprócz tych obserwowany. Musi być utrzymywany w bardzo niskich temperaturach i izolowany od wpływu Słońca, Ziemi, Księżyca czy własnych nagrzewających się elementów. Za pasywne chłodzenie odpowiedzialna będzie 5-wartwowa osłona słoneczna o wymiarach 21,197x14,162 metra. Zawsze będzie się ona znajdowała pomiędzy lustrami teleskopu a Słońcem, Ziemią i Księżycem. Będzie to możliwe, gdyż Teleskop Webba zostanie umieszczony w punkcie L2, w odległości 1,5 miliona kilometrów do Ziemi.
      Osłona zapewni teleskopowi stabilną temperaturę pracy poniżej -223 stopni Celsjusza. Osłona wykonana jest z pięciu warstw materiału o nazwie Kapton, a każdą z warstw pokryto aluminium. Każda z nich będzie chłodniejsza niż poprzednia. Dodatkowo dwie najcieplejsze warstwy, czyli dwie pierwsze warstwy patrząc od strony Słońca, mają warstwę krzemową, dodatkowo odbijającą ciepło. Inżynierowie nie tylko precyzyjnie dobrali właściwości warstw, ale niezwykle ważny był też kształt i odległości pomiędzy warstwami.
      Poszczególne warstwy osłony są niezwykle cienkie. Grubość pierwszej z nich to zaledwie 0,05 mm, a każda z czterech pozostałych jest o połowę cieńsza (0,025 mm). Każda warstwa ma nieco inny kształt i inną powierzchnię. Warstwa 1. jest największa i dość płaska, warstwa 5. – najmniejsza i bardziej zakrzywiona. Różna jest też odległość pomiędzy warstwami. Najbliżej siebie są na środku osłony, najdalej na jej krawędziach, co pozwala na lepsze odprowadzanie ciepła od centralnych części teleskopu ku krawędziom. Warstwa 1. będzie nagrzewała się do temperatury nie wyższej niż ok. 110 stopni Celsjusza, a warstwa piąta nigdy nie będzie cieplejsza niż -52 stopnie C. Natomiast najniższa temperatura piątej warstwy to -237 stopni.
      Osłona termiczna będzie bardzo duża, a to naraża ją na przedziurawienie przez mikrometeoryty. Dlatego też wyprodukowano ją i wzmocniono specjalnymi pasami, by ograniczyć obszar zniszczeń. Jeśli w osłonie powstanie dziura, ma się ona nie powiększać.
      Misja
      Główna misja JWST – w czasie której teleskop ma wykonać wszystkie postawione przed nim zadania – została zaplanowana na pięć lat, z możliwością przedłużenia o kolejnych 5 lat. Teleskop Webba zostanie umieszczony w pobliżu punktu libracyjnego (punktu Lagrange'a) 2, znajdującego się w odległości około 1,5 miliona kilometrów do Ziemi, po stronie przeciwnej od Słońca. Punkty libracyjne to takie miejsca w układzie dwóch ciał powiązanych grawitacyjnie, w których obiekt o pomijalnie małej masie może pozostać w spoczynku w stosunku do obu tych ciał. W układach takich trzech ciał (dwa ciała i obiekt o pomijalnej masie) istnieje 5 tego typu punktów.
      JWST będzie krążył wokół punktu L2 będąc zwrócony zawsze od Słońca, a osłona przeciwsłoneczna zawsze będzie chroniła jego instrumenty przed ciepłem naszej gwiazdy, planety i Księżyca. Oczywiście nie będzie krążył całkowicie swobodnie. Za utrzymanie odpowiedniej orbity i pozycji odpowiedzialnych będzie 10 par silników sterujących. To właśnie ilość paliwa dostępna dla silników jest głównym elementem ograniczającym czas misji JWST.
      Start
      Teleskop Webba będzie podróżował na rakiecie Ariane 5 przez 27 minut. Po tym czasie oddzieli się od niej i dalszą podróż odbędzie samodzielnie. W 33. minucie po starcie rozwinięte zostaną panele słoneczne i teleskop zacznie wytwarzać własną energię. Od tego momentu zacznie się stopniowy wielodniowy proces rozkładania osłony słonecznej, anten i luster.  Ma on zostać zakończony w ciągu 13 dni po wystrzeleniu. Następnym etapem będzie aktywowanie i przetestowanie ruchów każdego z segmentów lustra głównego oraz lustra wtórnego. Etap ten będzie trwał od 15. do 24. dnia od startu. Natomiast 29 dni po starcie Webb rozpocznie manewr wejścia na orbitę L2. A gdy już się na niej znajdzie nastąpi etap szybkiego kontrolowanego chłodzenia instrumentów naukowych i luster. Później zaś nastąpi pięciomiesięczny okres testów i kalibrowania instrumentów oraz optyki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Powodzeniem zakończyły się ostatnie testy układów elektrycznych, elektronicznych i komunikacyjnych Teleskopu Kosmicznego Jamesa Webba. Wykazały one, że wszystko działa tak, jak powinno, a Teleskop i jego cztery instrumenty naukowe mogą wysyłać i odbierać dane przez sieć, która wykorzystywana do komunikacji w kosmosie. Udane zakończenie testu przybliża nas do planowanego na październik wystrzelenia JWST.
      Podczas zakończonych właśnie testów sprawdzano zarówno pracę podzespołów elektronicznych i elektrycznych, jak i ich odporność na warunki panujące w czasie startu rakiety. Testy trwały w sumie przez 17 kolejnych dni. Wszystkie układy elektryczne JWST składają się z elementu A i dublującego go elementu B. Daje to większą pewność oraz elastyczność pracy.
      To była dla nas chwila dumy, gdyż wykazaliśmy, że pod względem elektrycznym Webb jest gotowy do pracy, mówi Jennifer Love-Pruitt, odpowiedzialna podzespoły elektryczne podstawy teleskopu.
      Po zakończeniu testów przepływu sygnałów, natychmiast przystąpiono do sprawdzania sposobu pracy teleskopu. Każdy z instrumentów wykonywał w symulowanym środowisku zadania takie, jakie będzie wykonywał po wystrzeleniu. JWST był przy tym traktowany tak, jakby znajdował się w przestrzeni kosmicznej. Komunikacja z urządzeniem odbywała się za pośrednictwem symulowanego Deep Space Network. To sieć komunikacyjna, której poszczególne elementy znajdują się w USA, Australii i Hiszpanii, a która jest używana przez NASA do komunikacji z urządzeniami znajdującymi się w przestrzeni kosmicznej.
      Podczas testów symulowano też mało prawdopodobną, lecz możliwą sytuację, gdy z jakiegoś powodu kontrola nad Webbem będzie musiała zostać przekazana z Baltimore do Greenbelt. Również i ten element przebiegł bez zakłóceń.
      Gdy już JWST znajdzie się w przestrzeni kosmicznej za komunikację z nim będzie odpowiadało DSN. Dodatkowo teleskop będzie bez przerwy miał łączność z Trackingand Date Relay Satellite Space Network w Nowym Meksyku, stacją Malindi w Kenii należącą do Europejskiej Agencji Kosmicznej oraz Europejskim Centrum Operacji Kosmicznych w Niemczech.
      Wystrzelenie teleskopu jest planowane na koniec października bieżącego roku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Kongres USA po raz kolejny postąpił wbrew propozycjom administracji prezydenckiej i znowu zwiększył nakłady na naukę. Paradoksalnie więc za kadencji prezydenta, który chciał w finansach nauki szukać oszczędności budżetowych, finansowanie badań rosło wyjątkowo szybko. Opisywaliśmy taki rekordowy w historii USA wzrost, który miał miejsce w roku 2018. Kongres postanowił właśnie, że przyszłoroczne nakłady na naukę znowu wzrosną.
      Całość przyszłorocznych wydatków budżetu USA określono na 1,4 biliona dolarów. Wzrost nakładów na naukę – mimo iż mniejszy niż w roku 2018 – budzi wśród środowiska naukowego nadzieję, że po poprawkach kwoty te będą jeszcze większe.
      W już uchwalonym budżecie postanowiono, że Narodowe Instytuty Zdrowia (NIH) otrzymają o 3% więcej niż w roku ubiegłym, do Narodowej Fundacji Nauki (NSF) trafi o 2,5% więcej, na badania naukowe NASA zostanie przeznaczona kwota o 2,3% większa niż w roku ubiegłym, a wzrost budżetu naukowego Departamentu Energii wyniesie 0,4%. Mamy zatem do czynienia z 4. rokiem z rządu wzrostu budżetu naukowego.
      Gdy prezydent Trump rozpoczynał swoje rządy w 2017 roku budżet NIH wynosił 32,3 miliarda USD. Obecnie wzrósł do 42,9 miliarda. To wzrost aż o 33%. Nieco mniejszym, bo 30-procentowym, wzrostem może pochwalić się wydział naukowy Departamentu Energii. Jego przyszłoroczny budżet to 7 miliardów dolarów, podczas gdy w roku 2017 było to 5,4 miliarda. Duży wzrost finansowania odczuwała też NASA. W roku 2018 jej budżet na badania naukowe został zwiększony o 8%, w roku 2019 zwiększono go o kolejne 11%. W latach 2020 i 2021 wzrost ten spowolnił, ale NASA nie ma powodów do narzekań. Jej przyszłoroczny budżet na badania naukowe to 7,3 miliarda dolarów. Najmniej wzrósł budżet Narodowej Fundacji Nauki, która w przyszłym roku będzie miała do dyspozycji niemal 8,5 miliarda dolarów. Od początku objęcia rządów przez prezydenta Trumpa jej budżet zwiększył się „jedynie” o 14%. To i tak znacznie lepiej w porównaniu z drugą kadencją prezydenta Obamy, kiedy to budżet NSF zanotował 4-procentowy wzrost.
      W ramach najnowszego budżetu przewidziano, że NIH otrzyma 42,9 miliarda dolarów, z czego 3,1 miliarda zostanie przeznaczone na badania nad chorobą Alzheimera. Program tych badań notuje od 5-lat rekordowe wzrosty budżetu. Narodowy Instytut Raka otrzyma 6,5 miliarda USD, a na program Brain Research through Advancing Innovative Neurotechnologies przeznaczono 560 milionów dolarów, czyli o 60 milionó USD więcej niż rok temu. O 20 milionów USD zwiększono budżet na badania nad uniwersalną szczepionką na grypę. Teraz naukowcy mają do dyspozycji 220 milionów USD. Kongres zgodził się też na finansowanie nowych projektów. I tak po 10 milionów USD zostanie przeznaczonych na badania nad przedterminowymi urodzinami oraz chorobami odkleszczowymi, a 50 milionów USD trafi do specjalistów zajmujących się wykorzystaniem sztucznej inteligencji do leczenia chorób przewlekłych.
      Największy w USA sponsor nauk fizycznych, Departament Energii, otrzymał w bieżącym roku na naukę nieco ponad 7 miliardów USD. Sześć projektów badawczych DOE zanotowało niewielkie wzrosty finansowania. Na badania nad superkomputerami przeznaczono 1 miliard USD, badania chemiczne, nauk materiałowych i pokrewne mogą liczyć na 1,2 miliarda dolarów, budżet na badania biologiczne i środowiskowe to 753 miliony. Z kolei na badania nad fuzją jądrową przeznaczono 671 milionów, specjaliści od fizyki wysokich energii mogą liczyć na 1,04 miliarda, a budżet badawczy energetyki atomowej pozostał na tym samym poziomie 713 milionów USD. Ponadto DOE ma przeznaczyć nie mniej niż 475 milionów na budowę eksaskalowych superkomputerów oraz nie mniej niż 245 milionów na badania nad komputerami kwantowymi. Advanced Research Projects Agency-Energy otrzymała 427 milionów USD.
      Narodowa Fundacja Nauki, która na badania otrzymała 6,9 miliarda USD, a na działania edukacyjne 968 milionów dolarów, dostała też pewne wytyczne od Kongresu. Prawodawcy nakazali jej stworzyć plany dotyczące dalszych losów Obserwatorium w Arecibo. Przypomnijmy, że legendarny radioteleskop niedawno się zawalił. Kongresmeni chcą wiedzieć, czy NSF ma zamiar zbudować tam nowe obserwatorium, a jeśli tak, to ile będzie ono kosztowało.
      Jeśli zaś chodzi o budżet naukowy NASA to wzrósł on o 2,3%, do 7,3 miliarda USD i utrzymano w nim proporcje finansowania poszczególnych programów, jednak z pewnymi ważnymi wyjątkami. W budżecie przeznaczono 127 milionów na działania edukacyjne, mimo iż prezydent Trump chciał zlikwidować ten program. Ponadto stwierdzono, że NASA ma prawo wybrać dowolną komercyjną rakietę do misji na orbitę Europy, księżyca Jowisza. Wcześniejszy budżet przewidywał, że misja Europa Clipper wykorzysta w tym celu Space Launch System. Kongres znacząco ograniczył finansowanie projektu ponownego lądowania Amerykanów na Księżycu. Zgodnie z planami administracji prezydenta Trumpa, lądowanie takie miało mieć miejsce do roku 2024. W związku z tym Biały Dom zwrócił się o finansowanie tego projektu kwotą 3,1 miliarda USD. Kongres przyznał jedynie 850 milionów. Wszystko wskazuje więc na to, że w zaplanowanym terminie lądowanie się nie odbędzie, a administracja prezydenta Bidena będzie musiała zrewidować plany jego poprzednika.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Grupa astronomów z University of Texas at Austin doszła do wniosku, że wybudowany na Księżycu teleskop – pomysł, który NASA zarzuciła dekadę temu – może rozwiązać problemy, z którymi inne teleskopy sobie nie poradzą. Księżycowy teleskop mógłby bowiem dostrzec pierwsze gwiazdy, które powstały we wszechświecie. Zespół, na którego czele stoi Anna Schauer pracująca przy Teleskopie Hubble'a, opublikuje wyniki swoich badań w The Astrophysical Journal.
      Historia astronomii to coraz potężniejsze teleskopy, które pozwalają nam dostrzec obiekty coraz bliżej Wielkiego Wybuchu, mówi profesor Volker Bromm, astrofizyk-teoretyk, który od dziesięcioleci bada pierwsze gwiazdy. Teleskop Kosmiczny Jamesa Webba (JWST) pozwoli nam zobaczyć pierwsze galaktyki. Jednak teorie mówią, że zanim powstały pierwsze galaktyki istniały gwiazdy III populacji. Ich dostrzeżenie jest nawet poza zasięgiem JWST. Do ich badań potrzebujemy jeszcze potężniejszego urządzenia.
      Pierwsze gwiazdy powstały około 13 miliardów lat temu. Narodziły się z połączenia wodoru oraz helu i prawdopodobnie były nawet 100-krotnie większe od Słońca. Nowe obliczenia wykonane przez Schauer pokazują, że teleskop, którego projekt NASA porzuciła przed dekadą, mógłby badać te gwiazdy. W roku 2008 zespół Rogera Angela z University of Arizona zaproponował zbudowanie na Księżycu urządzenia o nazwie Lunar Liquid-Mirror Telescope (LLMT). NASA przeprowadziła analizy dotyczące zasadności budowy takiego teleskopu i zrezygnowała z projektu. Jak zauważa Niv Drory z McDonald Obserwatory, wówczas jednak nie istniała nauka dotycząca najwcześniejszych gwiazd. Obecnie wiele wskazuje na to, że taki teleskop mógłby je badać.
      Potencjalne księżycowe laboratorium, nazwane przez Shauer „Ultimately Large Telescope”, miałoby średnicę 100 metrów. Teleskop działałby autonomicznie, byłby zasilany przez zbudowaną obok elektrownię fotowoltaiczną i przesyłałby dane do satelity na orbicie Księzyca.
      Lustro takiego teleskopu nie byłoby wykonane ze szkła, ale z płynu, który jest lżejszy, zatem jego transport na Księżyc byłby tańszy. Teleskop byłby obracającą się kadzią wypełnioną płynem, na powierzchni którego znajdowałby się metaliczny płyn. Mogłaby to być np. rtęć. Kadź bez przerwy by się obracała, by nadać powierzchni płynu odpowiedni paraboliczny kształt, dzięki czemu działałaby ona jak lustro paraboliczne. Autorzy najnowszego studium mówią, że teleskop taki mógłby powstać w kraterze na północnym lub południowym biegunie księżyca.
      Żyjemy w świecie pełnym gwiazd. Kluczowym pytaniem jest więc to o utworzenie się pierwszych gwiazd. Ich powstanie było bowiem kluczowym elementem w historii wszechświata, kiedy to pierwotne warunki panujące po Wielkim Wybuchu prowadziły do coraz bardziej złożonej budowy kosmosu, a z czasem umożliwiły powstanie planet, życia oraz istot inteligentnych. Moment powstania pierwszych gwiazd jest poza możliwościami obserwacyjnymi obecnych lub planowanych już teleskopów. Dlatego też musimy pomyśleć o urządzeniu, które pozwoli nam na obserwacje pierwszych gwiazd u zarania dziejów, mówi Bromm.
      Warto w tym miejscu przypomnieć, że niedawno pisaliśmy iż NASA chce wiedzieć, czy roboty mogą wybudować na Księżycu gigantyczny radioteleskop.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Unia Europejska dała zielone światło i przyznała znaczące fundusze niemal wszystkim propozycjom złożonym przez Europejską Agencję Kosmiczną. Po 2-dniowym spotkaniu budżetowym w Hiszpanii ESA otrzymała na kolejne 3 lata o ponad 20% więcej środków niż w poprzednim analogicznym okresie. To największy od 25 lat wzrost budżetu Europejskiej Agencji Kosmicznej.
      Dzięki temu możliwe będzie: jednoczesne utrzymanie dwóch dużych laboratoriów kosmicznych, jednego rejestrującego promieniowanie rentgenowskie i drugiego obserwującego fale grawitacyjne; przygotować misję na Urana i Neptuna; wziąć udział w projekcie NASA dotyczącym przywiezienia na Ziemię próbek z Marsa; zwiększyć zakres badań klimatu Ziemi oraz rozwinąć technologię rakiet wielokrotnego użytku.
      Przedstawiciele ESA bardzo często wychodzili zawiedzeni z wcześniejszych spotkań z ministrami państw UE. Musieli rezygnować z projektów, które nie otrzymały finansowania. Tym razem było jednak inaczej. Szef Agencji, Jan Wörner, mówi, że przez ostatnie 2 lata przygotowywano propozycje i lobbowano za nimi. NASA ma jeden rząd. My mamy 22, stwierdził. Ku jego zdziwieniu okazało się, że tym razem ministrowie nie odrzucili żadnego z projektów.
      Na najbliższe trzy lata Europejska Agencja Kosmiczna będzie dysponowała budżetem w wysokości 12,5 miliarda euro. Podczas poprzedniego spotkania budżetowego, z roku 2016, przyznano jej 10,3 miliarda euro. Dla porównania, przyszłoroczny budżet NASA to 22,6 miliarda USD, a łącznie w latach 2017–2019 NASA miała do dyspozycji kwotę niemal 62 miliardów USD.
      To była niespodzianka. Przyznano więcej, niż chcieliśmy. To dobra wiadomość, cieszy się Wörner. Ponadto ESA otrzymała dodatkowo 1,9 miliarda euro na prowadzenie obowiązkowych projektów, na które muszą zgodzić się wszystkie kraje biorące udział w pracach ESA. W ramach tych dodatkowych pieniędzy rozwijany będzie m.in. projekt Laser Interferometer Space Antenna (LISA), czyli budowa obserwatorium fal grawitacyjnych. ESA musi się też pospieszyć, jeśli chce dołączyć do szykowanej przez NASA misji na Urana i Neptuna. Okienko startowe do misji otworzy się bowiem około roku 2030.
      Znacząco wzrósł budżet przeznaczony na badania Ziemi. Na ten cel ESA może wydać w ciągu trzech lat aż 1,81 miliarda euro. To o 29% więcej, niż wnioskowano. Rozwijany będzie też dział eksploracji kosmosu, w skład którego wchodzą projekty związane z Międzynarodową Stacją Kosmiczną, Księżycem i Marsem. ESA zobowiązała się, że będzie partycypowała w kosztach utrzymania MSK do roku 2030, będzie współfinansowała rozwijany przez NASA projekt Lunar Gateway oraz rozpocznie budowę podzespołów do wspólnej z NASA misji przywiezienia marsjańskich próbek na Ziemię.
      Jedynym obszarem badawczym, który nie przekonał ministrów w pełni był nowy dla ESA temat dotyczący bezpieczeństwa kosmicznego. W jego ramach Agencja skupi się na badaniach kosmicznej pogody oraz obiektów bliskich Ziemi. O ile projekt badań nad uchronieniem planety przed uderzeniem asteroidy zyskał pełne finansowanie, to już propozycja umieszczenia w punkcie Lagrange'a satelitów obserwujących rozbłyski słoneczne nie otrzymała pełnego wsparcia finansowego.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...