Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Niektórzy mieli możność obserwować, inni tylko czytać o zachowaniu myszy złapanych przez kota. Gryzonie w takiej sytuacji zamierają. Strach: udawać nieżywego, uciekać, czy atakować? Tak można w skrócie podsumować możliwe strategie w przypadku zagrożenia. Jak się okazuje, za wybór postępowania wobec strachu odpowiadają określone części mózgu i wydzielone grupy neuronów, którymi można sterować farmakologicznie.

Zaawansowane badania przeprowadziła wspólna ekipa włoskich naukowców z European Molecular Biology Laboratory (Europejskie Laboratorium Biologii Molekularnej, EMBL) w Monterotondo oraz laboratorium firmy farmaceutycznej GlaxoSmithKline w Weronie. Nowoczesne podejście polegało na połączeniu technik modyfikacji genetycznej, farmakologii oraz obrazowanie pracy mózgu myszy przy pomocy funkcjonalnego rezonansu magnetycznego (fMRI).

Głównym ośrodkiem mózgu reagującym na strach i uczucie zagrożenia jest ciało migdałowate. Działa ono niezależnie od innych struktur mózgu, pozwalając na błyskawiczną reakcję, zanim sytuacja zostanie przetworzona przez korę nową, czyli poddana świadomej analizie. Naukowcy zmodyfikowali genetycznie myszy tak, żeby komórki tzw. typu I w ciele migdałowatym jako reagowały na substancję chemiczną, blokującą ich działanie, w ten sposób można było farmakologicznie „wyłączać" przetwarzanie strachu przez badane gryzonie. Myszy uwarunkowano tak, aby odczuwały strach na określony sygnał dźwiękowy. Funkcjonowanie mózgu straszonych myszy badano przy pomocy fMRI.

Doświadczenie przyniosło zaskakujące rezultaty, jak mówi Cornelius Gross, prowadzący projekt ze strony EMBL. Kiedy zahamowano działanie neuronów odpowiadających na strach, myszy przestały zastygać ze strachu - tego się spodziewano. Nie spodziewano się natomiast tego, że zamiast zastygać - zaczną reagować na bodziec dźwiękowy w odmienny sposób, np. agresją.

Doświadczenie pokazało, jak podsumowuje dr Gross, że zablokowanie funkcji ciała migdałowatego wcale nie likwiduje uczucia strachu - to podważa powszechny pogląd na funkcję tego obszaru mózgu. Zamiast tego, zmienia się odruchowa strategia w obliczu zagrożenia - z biernej na czynną, aktywną.

Funkcjonalny rezonans magnetyczny, w wersji dostosowanej do laboratoryjnych myszy przez Angelo Bifone'a z laboratorium GlaxoSmithKline, wykazał że zmianie strategii obronnej towarzyszy wzmożona aktywność kory mózgowej. Farmakologiczne zablokowanie aktywności kory przy pomocy atropiny z kolei przywróciło pierwotną reakcję na strach - zamieranie w bezruchu.

Doświadczenie dowodzi, że ciało migdałowate steruje reakcją na strach nie poprzez pień mózgu, jak dotychczas sądzono, ale poprzez korę mózgową. Daje to uczonym zajmującym się funkcjonowaniem mózgu nowe zagadki i tematy do badań.

Również ludzie reagują na strach według tych schematów: bierności lub agresji. Zrozumienie sposobu, w jaki wybierana jest strategia może mieć istotne znaczenie dla leczenia niektórych chorób, czy w adaptacji do sytuacji stresowych.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie ma sensu uciekać jak już drapieżnik dopadł to lepiej symulować biernośc i dalszych instynktów łowczych nie stymulować (jak kot jest młody i najedzony to może się pobawić gryzoniem, pokaleczyć go pazurami i znudzić się nie pożerając go wcale). Przykładowo kurze, która będzie miała mieć łeb odrąbany siekierą, moża wymusić uległośc i bezruch kładąc ją bokiem i ręką szyję przytrzymując.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Myśle że tu nie chodzi o zwierzęta tylko o ludzi, np żołnierz zamiast zamierać przy wybuchu granatu bierze się do ataku, albo podczas wypadku zamiast być sparaliżowanym sytuacją myślisz - manewrujesz, wychodzisz z sytuacji i ratujesz życie. Wynalezienie leku który będzie modyfikował nasze zachowanie podczas sytuacji zagrożenia daje niesamowite korzyści i szerokie zastosowanie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Skany mózgu dwóch szczepów myszy wypijających znaczne ilości alkoholu ujawniły, że u zwierząt pozbawionych receptorów dopaminy DRD2 dochodzi do zmniejszenia objętości kory mózgowej i wzgórza. Oznacza to, że receptory DRD2 zabezpieczają przed uszkodzeniami mózgu przez alkohol.
      Dr Foteini Delis, neuroanatom z Behavioral Neuropharmacology and Neuroimaging Lab w Brookhaven, przypomina, że już wcześniejsze odkrycia sugerowały, że receptory dopaminowe D2 chronią przed uzależniającym wpływem alkoholu.
      W ramach najnowszego studium Amerykanie sprawdzali, jak spożycie alkoholu oddziałuje na ogólną objętość mózgu oraz objętość poszczególnych struktur/rejonów u zwykłych myszy oraz gryzoni z wyeliminowanym genem receptorów dopaminowych D2. Przez pół roku połowa każdej z grup piła czystą wodę, a reszta 20-procentowy etanol. Po upływie tego czasu mózg wszystkich zwierząt zbadano za pomocą rezonansu magnetycznego.
      Okazało się, że przewlekłe spożycie alkoholu prowadziło do ogólnej atrofii mózgu, oraz zmniejszenia objętości kory i wzgórza, ale tylko u zwierząt z brakującymi receptorami DRD2. Jeden z członków zespołu, Peter Tanatos, podkreśla, że uszkodzenia mózgu przypominały te widywane u alkoholików, dlatego myszy stanowią wiarygodny model badań. U ludzi te rejony mózgu są krytyczne dla przetwarzania mowy, danych czuciowych oraz sygnałów ruchowych, a także tworzenia długotrwałych wspomnień. Poziom DRD2 poniżej normy zwiększa jednostkową podatność na uszkadzające działanie alkoholu. Ponieważ oznacza on także podwyższone ryzyko uzależnienia, staje się jasne, że to układ dopaminergiczny powinien się stać przedmiotem badań nad istotą i leczeniem alkoholizmu.
    • przez KopalniaWiedzy.pl
      Jak nauczyć się bez większego wysiłku, a nawet świadomości, rzucać jak czołowy koszykarz albo grać na pianinie? Japońsko-amerykański zespół naukowców opracował bazującą na fMRI metodę, która stanowi twórcze rozwinięcie zwykłego neurotreningu i wg części specjalistów, wygląda jak żywcem wyjęta z filmu Matrix.
      Naukowcy z Uniwersytetu w Bostonie (BU) i ATR Computational Neuroscience Laboratories w Kioto zauważyli, że można wykorzystać informację zwrotną z kory wzrokowej i modyfikować jej aktywność w taki sposób, by upodobniła się do idealnego wzorca danej czynności/zadania.
      Pola wzrokowe, które odpowiadają za postrzeganie ruchu, koloru, kształtu, są u dorosłego wystarczająco plastyczne, by umożliwić wzrokowe uczenie percepcyjne - podkreśla Takeo Watanabe z BU. Niektóre wcześniejsze badania potwierdziły związek między poprawą osiągnięć wzrokowych a zmianami w polach wzrokowych, podczas gdy inni naukowcy odkrywali korelacje w obrębie wyższych ośrodków wzrokowych i decyzyjnych. Żadne z tych studiów nie sprawdzało jednak bezpośrednio, czy początkowe pola wzrokowe są wystarczająco plastyczne, aby umożliwić uczenie percepcyjne. Podczas eksperymentów japońsko-amerykański zespół wykorzystał zatem informację zwrotną z funkcjonalnego rezonansu magnetycznego. Badano, czy doprowadzając raz po raz do aktywacji związanej ze specyficzną cechą wzrokową, można doprowadzić do poprawy w postrzeganiu tej cechy, mimo że w rzeczywistości w ogóle jej nie prezentowano. Okazało się, że tak, w dodatku poprawa ma charakter długoterminowy. Co ważne, metoda działa, nawet gdy badany nie zdaje sobie sprawy, czego właściwie się uczy.
      W przyszłości naukowcy chcą sprawdzić, czy metoda działa także w odniesieniu do zmysłów innych niż wzrok.
    • przez KopalniaWiedzy.pl
      Po raz pierwszy udało się wykazać, że kora mózgowa, obszar uznawany przede wszystkim za siedlisko wyższych funkcji poznawczych, pełni również ważną rolę w uczeniu emocjonalnym.
      Wyniki studium naukowców z Institut National de la Santé et de la Recherche Médicale (INSERM) i szwajcarskiego Instytutu Badań Biomedycznych im. Friedricha Mieschera (Friedrich Miescher Institute of Biomedical Research, FMI) ukazały się w piśmie Nature.
      Zaburzenia lękowe występują u ok. 10% dorosłych. Rola, jaką odgrywa w nich ciało migdałowate, jest dobrze znana. Tego samego nie można już jednak powiedzieć o innych częściach mózgu. Wiedząc, że przed przestraszeniem się musimy poczuć zapach, coś usłyszeć lub zobaczyć, szwajcarsko-francuski zespół zajął się wizualizowaniem ścieżki, za pośrednictwem której przetwarzane głównie przez korę bodźce czuciowe oddziałują na mózg w czasie uczenia się strachu.
      Podczas eksperymentów myszy uczyły się kojarzyć dźwięk z przykrymi bodźcami, przez co sam dźwięk stawał się dla nich nieprzyjemny (zachodziło warunkowanie klasyczne). By prześledzić aktywność neuronów podczas uczenia, naukowcy zastosowali metodę zwaną dwufotonowym obrazowaniem wapnia. Jest to stosunkowo nowy rodzaj mikroskopii, dzięki któremu można obejrzeć głębsze warstwy tkanki. Bazuje on na tym, że gdy komórka nerwowa jest aktywowana, przebiega przez nią fala wapnia. Wstrzyknięcie pochłanianego przez neurony znacznika pozwala ustalić, co właściwie (i gdzie) dzieje się w korze w czasie emocjonalnego uczenia.
      W zwykłych okolicznościach neurony kory słuchowej są silnie hamowane. Podczas uczenia strachu aktywowany jest mikroobwód rozhamowujący. Uwolnienie acetylocholiny w korze umożliwia chwilową aktywację tego mikroukładu i rozhamowanie pobudzających neuronów projekcyjnych z długimi aksonami. Z tego powodu gdy zwierzę słyszy podczas uczenia dźwięk, bodziec jest przetwarzany intensywniej niż zwykle, co oczywiście, ułatwia tworzenie wspomnień.
      Aby potwierdzić swoje odkrycia, akademicy posłużyli się kolejną nowoczesną techniką - optogenetyką (łączy ona genetykę z optyką i pozwala na kontrolę neuronów za pomocą wiązek lasera). Rozhamowanie zaburzano wybiórczo podczas uczenia. Gdy następnego dnia badano pamięć myszy, okazało się, że była ona poważnie zaburzona. Oznacza to, że rozhamowanie korowe odgrywa kluczową rolę w uczeniu strachu.
    • przez KopalniaWiedzy.pl
      W mózgach dzieci będących świadkami i ofiarami przemocy domowej występują wzorce aktywności, jakie widuje się w mózgach żołnierzy biorących udział w walkach.
      Naukowcy z Uniwersyteckiego College'u Londyńskiego (UCL) i Centrum Anny Freud posłużyli się funkcjonalnym rezonansem magnetycznym (fMRI). Zauważyli, że u dzieci żyjących w brutalnych rodzinach podczas oglądania zdjęć zagniewanych twarzy wzrasta aktywność w ciele migdałowatym oraz przedniej części wyspy.
      Wcześniejsze badania fMRI wykazały, że u żołnierzy biorących udział w potyczkach/walkach po wykryciu potencjalnie zagrażającego bodźca także wzrasta aktywność tych samych obszarów mózgu. Psycholodzy uważają, że zarówno dzieci, jak i żołnierze przystosowują się do swojej sytuacji poprzez hiperświadomość zagrożeń środowiskowych.
      Autorzy studium opublikowanego na łamach Current Biology podkreślają, że amygdala i przednia część wyspy mają związek z zaburzeniami lękowymi. Adaptacja obejmująca te regiony wyjaśnia zatem, czemu dzieci będące ofiarami przemocy na późniejszych etapach życia częściej zmagają się właśnie z zaburzeniami lękowymi.
      Wszystkie badane dzieci były zdrowe [...]. Wykazaliśmy więc, że ekspozycja na przemoc domową wiąże się ze zmienionym funkcjonowaniem mózgu, któremu nie towarzyszą objawy psychiatryczne. Zmiany te mogą jednak stanowić nerwowy czynnik ryzyka [są przystosowawcze na krótszą metę, ale w dłuższej perspektywie zwiększają prawdopodobieństwo problemów emocjonalnych] - tłumaczy dr Eamon McCrory z UCL.
      W eksperymencie wzięło udział 20 dzieci z udokumentowaną historią przemocy. Uwzględniono też 23-osobową grupę kontrolną. Średni wiek maltretowanych dzieci wynosił 12 lat. Podczas badania w skanerze wszystkim pokazywano zdjęcia kobiecych i męskich twarzy wyrażających smutek i złość. Pojawiały się też fizjonomie neutralne. Zadanie polegało jedynie na określeniu, czy wyświetlana twarz należy do kobiety, czy mężczyzny.
      W kolejnym etapie studium McCrory i inni zamierzają ustalić, jak stabilne są odnotowane zmiany w aktywności wyspy i ciała migdałowatego. Nie każde dziecko doświadczające przemocy ma przecież później problemy psychiczne. Warto sprawdzić, jakie mechanizmy się za tym kryją.
    • przez KopalniaWiedzy.pl
      Wiele osób, gdy dopada je popołudniowa senność, a drzemka w biurze lub na uczelni jest przecież wysoce niewskazana, sięga po coś słodkiego. Okazuje się jednak, że to nie cukier, ale białko podtrzymuje stan czuwania oraz reguluje wydatkowanie energii, sprzyjając zachowaniu szczupłej sylwetki.
      Naukowcy z Uniwersytetu w Cambridge sprawdzali, jak poszczególne składniki odżywcze wpływają na neurony oreksynowe - grupę komórek podwzgórza i pnia mózgu (ich zmniejszona aktywność skutkuje narkolepsją, wiąże się też ze wzrostem wagi). Podczas eksperymentów na myszach okazało się, że aminokwasy stymulują neurony oreksynowe silniej niż cokolwiek innego.
      Impulsy elektryczne generowane przez neurony oreksynowe pobudzają stan czuwania i mówią ciału, by spalało kalorie. Zastanawialiśmy się, czy składniki odżywcze mogą zmieniać te impulsy - wyjaśnia dr Denis Burdakov z Instytutu Nauk Metabolicznych.
      Ponieważ neuronów oreksynowych jest niedużo i trudno je znaleźć, Brytyjczycy oznakowali je fluorescencyjnym markerem. Później wprowadzali różne składniki odżywcze, m.in. kombinację aminokwasów występującą w białku jaja kurzego, i śledzili aktywność interesujących ich komórek nerwowych.
      Wcześniejsze badania tej samej grupy wykazały, że glukoza blokuje komórki oreksynowe, co uznano zresztą za przyczynę senności poposiłkowej. Kiedy tym razem przyglądano się oddziaływaniom między cukrem a aminokwasami, okazało się, że aminokwasy zapobiegają blokowaniu neuronów oreksynowych przez glukozę.
      Burdakov i inni cieszą się, że dzięki ich eksperymentom wyjaśniło się, czemu posiłki białkowe sprawiają, że ludzie czują się bardziej czujni i mniej wyciszeni niż po posiłkach węglowodanowych. To ekscytujące, że decydując, co chcemy zjeść, dysponujemy racjonalnymi metodami dostrajania wybranych komórek mózgu, by były bardziej lub mniej aktywne.
      Aby zwalczyć otyłość i bezsenność, które dręczą współczesne społeczeństwo, potrzebujemy więcej informacji o tym, jak dieta wpływa na sen i komórki sterujące apetytem. Obecnie badania sugerują, że jeśli masz wybór między tostem z dżemem a tostem z jajkiem, wybierz drugą opcję. Nawet jeśli oba zawierają zbliżoną liczbę kalorii, odrobina białka powie organizmowi, żeby po posiłku spalił ich więcej - podsumowuje Burdakov.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...