Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Intel poinformował o dokonaniu niezwykle ważnego kroku na drodze do zastąpienia podzespołów elektronicznych układami fotonicznymi. Koncern pokazał prototyp pierwszego w historii bazującego na krzemie łącza optycznego ze zintegrowanym laserem. Już w tej chwili jest ono w stanie przesyłać dane na duże odległości z prędkością 50 gigabitów na sekundę.

Obecnie do przesyłania danych w urządzeniach elektronicznych wykorzystywana jest miedź. Sygnał elektryczny ulega w niej degradacji, dlatego też podzespoły muszą być umieszczone blisko siebie. Tylko dzięki temu jesteśmy w stanie osiągnąć odpowiednią jakość sygnału i duże prędkości jego przepływu. Wykorzystanie wynalazku Intela oznacza, że dane można będzie przesyłać szybciej i na większe odległości. To z kolei wpłynie w przyszłości na sposób projektowania komputerów i całkowicie zmieni architekturę centrów bazodanowych. Dzięki krzemowej fotonice poszczególne elementy superkomputerów czy części bazy danych nie będą musiały znajdować się blisko siebie. Będzie można rozsiać je wygodnie po całym budynku lub nawet zespole budynków. Z kolei w domu, za pomocą cienkiego kabla optycznego będziemy mogli połączyć odtwarzacz wideo z olbrzymim ekranem znajdującym się w innym pomieszczeniu i mieć pewność, że uzyskany obraz będzie niezwykle wysokiej jakości. Zastąpienie łączy miedzianych optycznymi umożliwi zbudowanie jeszcze potężniejszych superkomputerów niż obecnie.

Justin Rattner, prezes ds. technologicznych Intela, powiedział, że 50-gigabitowe optyczne łącze posłuży inżynierom koncernu do testowania i rozwijania nowych pomysłów. Celem firmy jest opracowanie technologii, która pozwoli na tanie przesyłanie olbrzymich ilości danych za pomocą szybkich łączy bez konieczności używania egzotycznych materiałów, takich jak np. arsenek galu.

Najnowsze osiągnięcie Intela było możliwe dzięki wcześniejszym badaniom, podczas których wynaleziono m.in. pierwszy krzemowy laser czy wysoko wydajne optyczne modulatory i fotodetektory. O osiągnięciach tych informowaliśmy w przeszłości.

Teraz Intel wykorzystał cztery lasery, w których świetle dane są kodowane z prędkością 12,5 Gb/s. Promienie są następnie łączone, dzięki czemu uzyskujemy przepływ danych rzędu 50 gigabitów na sekundę. Na drugim końcu łącza znajduje się układ, który ponownie rozdziela promienie i kieruje je do czterech fotodetektorów, zamieniających dane w sygnały elektryczne. Całość została wykonana przy użyciu technik i materiałów używanych obecnie w przemyśle półprzewodnikowym.

Opisanej powyżej technologii nie zobaczymy jednak w najbliższym czasie w naszych komputerach. Intel chce ją skomercjalizować dopiero wówczas, gdy uda się osiągnąć transfer danych rzędu 1 Tb/s. Inżynierowie koncernu pracują zatem nad umieszczeniem w układzie większej liczby laserów oraz nad zwiększeniem prędkości pracy modulatora.

Jednak co nieco z prac Intela trafi w nasze ręce w nieodległym czasie. Firma pracuje bowiem jednocześnie nad technologią Light Peak, której celem jest opracowanie technologii optycznej, która będzie w stanie przesyłać na firmowej platformie dane z prędkością 10 Gb/s bez względu na rodzaj wykorzystanego protokołu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie widzę tu wielkiej rewelacji! To po prostu znane już od lat łącze światłowodowe, tyle tylko, że wysokiej jakości. Rewelacją będzie dopiero opracowanie optronicznych bramek logicznych, do tego subminiaturowych i przystosowanych do masowej produkcji metodami stosowanymi w "klasycznej" elektronice. Jak przeczytam o procesorach optronicznych - to dopiero będzie prawdziwa rewelacja, ale obawiam się, że do tego jeszcze daaalekoo.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Misja Psyche jeszcze nie dotarła do celu, a już zapisała się w historii podboju kosmosu. Głównym jej celem jest zbadanie największej w Układzie Słonecznym asteroidy Psyche. Przy okazji NASA postanowiła przetestować technologię, z którą eksperci nie potrafili poradzić sobie od dziesięcioleci – przesyłanie w przestrzeni kosmicznej danych za pomocą lasera. Agencja poinformowała właśnie, że z Psyche na Ziemię trafił 15-sekudowy materiał wideo przesłany z odległości 31 milionów kilometrów z maksymalną prędkością 267 Mbps. To niemal 2-krotnie szybciej niż średnia prędkość szerokopasmowego internetu w Polsce.
      To, czego właśnie dokonała NASA jest nie zwykle ważnym osiągnięciem. Pozwoli bowiem na znacznie sprawniejsze zbieranie danych z instrumentów pracujących w przestrzeni kosmicznej i zapewni dobrą komunikację z misjami załogowymi odbywającymi się poza orbitą Ziemi.
      Sygnał z Psyche potrzebował około 101 sekund, by dotrzeć do Ziemi. Dane, przesyłane przez laser pracujący w bliskiej podczerwieni trafiły najpierw do Hale Teelscope w Palomar Observatory w Kalifornii. Następnie przesłano je do Jet Propulsion Laboratory w Południowej Kalifornii, gdzie były odtwarzane w czasie rzeczywistym podczas przesyłania. Jak zauważył Ryan Rogalin, odpowiedzialny za elektronikę odbiornika w JPL, wideo odebrane w Palomar zostało przesłane przez internet do JPL, a transfer danych odbywał się wolniej, niż przesyłanie danych z kosmosu. Podziwiając tempo transferu danych nie możemy zapomnieć też o niezwykłej precyzji, osiągniętej przez NASA. Znajdujący się na Psyche laser trafił z odległości 31 milionów kilometrów w 5-metrowe zwierciadło teleskopu. Sam teleskop to również cud techniki. Jego budowę ukończono w 1948 roku i przez 45 lat był najdoskonalszym teleskopem optycznym, a jego zwierciadło główne jest drugim największym zwierciadłem odlanym w całości.
      Po co jednak prowadzić próby z komunikacją laserową, skoro od dziesięcioleci w przestrzeni kosmicznej z powodzeniem przesyła się dane za pomocą fal radiowych? Otóż fale radiowe mają częstotliwość od 3 Hz do 3 Thz. Tymczasem częstotliwość pracy lasera podczerwonego sięga 300 THz. Zatem transmisja z jego użyciem może być nawet 100-krotnie szybsza. Ma to olbrzymie znaczenie. Chcemy bowiem wysyłać w przestrzeń kosmiczną coraz więcej coraz doskonalszych narzędzi. Dość wspomnieć, że Teleskop Webba, który zbiera do 57 GB danych na dobę, wysyła je na Ziemię z prędkością dochodzącą do 28 Mb/s. Zatem jego systemy łączności działają 10-krotnie wolniej, niż testowa komunikacja laserowa.
      Zainstalowany na Psyche Deep Space Optical Communication (DSOC) uruchomiono po raz pierwszy 14 listopada. Przez kolejne dni system sprawdzano i dostrajano, osiągając coraz szybszy transfer danych i coraz większą precyzję ustanawiania łącza z teleskopem. W tym testowym okresie przesłano na Ziemię łącznie 1,3 terabita danych. Dla porównania, misja Magellan, która w latach 1990–1994 badała Wenus, przesłała w tym czasie 1,2 Tb.
      Misja Psyche korzysta ze standardowego systemu komunikacji radiowej. DSOC jest systemem testowym, a jego funkcjonowanie nie będzie wpływało na powodzenie całej misji.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Intel ogłosił, że wybuduje w Polsce supernowoczesny zakład integracji i testowania półprzewodników. Stanie on w Miękini pod Wrocławiem, a koncern ma zamiar zainwestować w jego stworzenie do 4,6 miliarda dolarów. Inwestycja w Polsce to część obecnych i przyszłych planów Intela dotyczących Europy. Firma ma już fabrykę półprzewodników w Leixlip w Irlandii i planuje budowę drugiej w Magdeburgu w Niemczech. W sumie Intel chce zainwestować 33 miliardy euro w fabrykę w Niemczech, zakład badawczo-rozwojowo-projektowy we Francji oraz podobne przedsięwzięcia we Włoszech, Hiszpanii i Polsce.
      Zakład w Polsce ma rozpocząć pracę w 2027 roku. Zatrudnienie znajdzie w nim około 2000 osób, jednak inwestycja pomyślana została tak, by w razie potrzeby można było ją rozbudować. Koncern już przystąpił do realizacji fazy projektowania i planowania budowy, na jej rozpoczęcie będzie musiała wyrazić zgodę Unia Europejska.
      Intel już działa w Polsce i kraj ten jest dobrze przygotowany do współpracy z naszymi fabrykami w Irlandii i Niemczech. To jednocześnie kraj bardzo konkurencyjny pod względem kosztów, w którym istnieje solidna baza utalentowanych pracowników, stwierdził dyrektor wykonawczy Intela, Pat Gelsinger. Przedstawiciele koncernu stwierdzili, że Polskę wybrali między innymi ze względu na istniejącą infrastrukturę, odpowiednio przygotowaną siłę roboczą oraz świetne warunki do prowadzenia biznesu.
      Zakład w Miękini będzie ściśle współpracował z fabryką w Irlandii i planowaną fabryką w Niemczech. Będą do niego trafiały plastry krzemowe z naniesionymi elementami elektronicznymi układów scalonych. W polskim zakładzie będą one cięte na pojedyncze układy scalone, składane w gotowe chipy oraz testowane pod kątem wydajności i jakości. Stąd też będą trafiały do odbiorców. Przedsiębiorstwo będzie też w stanie pracować z indywidualnymi chipami otrzymanymi od zleceniodawcy i składać je w końcowy produkt. Będzie mogło pracować z plastrami i chipami Intela, Intel Foundry Services i innych fabryk.
      Intel nie ujawnił, jaką kwotę wsparcia z publicznych pieniędzy otrzyma od polskiego rządu. Wiemy na przykład, że koncern wciąż prowadzi negocjacje z rządem w Berlinie w sprawie dotacji do budowy fabryki w Magdeburgu. Ma być ona warta 17 miliardów euro, a Intel początkowo negocjował kwotę 6,8 miliarda euro wsparcia, ostatnio zaś niemieckie media doniosły, że firma jest bliska podpisania z Berlinem porozumienia o 9,9 miliardach euro dofinansowania. Pat Gelsinger przyznał, że Polska miała nieco więcej chęci na inwestycję Intela niż inne kraje.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      „Niemożliwy” unipolarny (jednobiegunowy) laser zbudowany przez fizyków z University of Michigan i Universität Regensburg może posłużyć do manipulowania kwantową informacją, potencjalnie zbliżając nas do powstania komputera kwantowego pracującego w temperaturze pokojowej. Laser taki może też przyspieszyć tradycyjne komputery.
      Światło, czyli promieniowanie elektromagnetyczne, to fala oscylująca pomiędzy grzbietami a dolinami, wartościami dodatnimi a ujemnymi, których suma wynosi zero. Dodatni cykl fali elektromagnetycznej może przesuwać ładunki, jak np. elektrony. Jednak następujący po nim cykl ujemny przesuwa ładunek w tył do pozycji wyjściowej. Do kontrolowania przemieszania informacji kwantowej potrzebna byłaby asymetryczna – jednobiegunowa – fala światła. Optimum byłoby uzyskanie całkowicie kierunkowej, unipolarnej „fali”, w której występowałby tylko centralny grzbiet, bez oscylacji. Jednak światło, jeśli ma się przemieszczać, musi oscylować, więc spróbowaliśmy zminimalizować te oscylacje, mówi profesor Mackillo Kira z Michigan.
      Fale składające się tylko z grzbietów lub tylko z dolin są fizycznie niemożliwe. Dlatego też naukowcy uzyskali falę efektywnie jednobiegunową, która składała się z bardzo stromego grzbietu o bardzo wysokiej amplitudzie, któremu po obu stronach towarzyszyły dwie rozciągnięte doliny o niskiej amplitudzie. Taka konstrukcja powodowała, że grzbiet wywierał silny wpływ na ładunek, przesuwając go w pożądanym kierunku, a doliny były zbyt słabe, by przeciągnąć go na pozycję wyjściową.
      Taką falę udało się uzyskać wykorzystując półprzewodnik z cienkich warstw arsenku galu, w którym dochodzi do terahercowej emisji dzięki ruchowi elektronów i dziur. Półprzewodnik został umieszczony przed laserem. Gdy światło w zakresie bliskiej podczerwieni trafiło w półprzewodnik, doszło do oddzielenia się elektronów od dziur. Elektrony poruszyły się w przód. Następnie zostały z powrotem przyciągnięte przez dziury. Gdy elektrony ponownie łączyły się z dziurami, uwolniły energię, którą uzyskały z impulsu laserowego. Energia ta miała postać silnego dodatniego półcyklu w zakresie teraherców, przed i po którym przebiegał słaby, wydłużony półcykl ujemny.
      Uzyskaliśmy w ten sposób zadziwiającą unipolarną emisję terahercową, w którym pojedynczy dodatni półcykl był czterokrotnie wyższy niż oba cykle ujemne. Od wielu lat pracowaliśmy nad impulsami światła o coraz mniejszej liczbie oscylacji. Jednak możliwość wygenerowania terahercowych impulsów tak krótkich, że efektywnie składały się z mniej niż pojedynczego półcyklu oscylacji była czymś niewyobrażalnym, cieszy się profesor Rupert Hubner z Regensburga.
      Naukowcy planują wykorzystać tak uzyskane impulsy do manipulowania elektronami w materiałach kwantowych w temperaturze pokojowej i badania mechanizmów kwantowego przetwarzania informacji. Teraz, gdy wiemy, jak uzyskać unipolarne terahercowe impulsy, możemy spróbować nadać im jeszcze bardziej asymetryczny kształt i lepiej przystosować je do pracy z kubitami w półprzewodnikach, dodaje doktorant Qiannan Wen.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Światło posiada niezwykle interesującą cechę. Jego fale o różnej długości nie wchodzą ze sobą w interakcje. Dzięki temu można jednocześnie przesyłać wiele strumieni danych. Podobnie, światło o różnej polaryzacji również nie wchodzi w interakcje. Zatem każda z polaryzacji mogłaby zostać wykorzystana jako niezależny kanał przesyłania i przechowywania danych, znakomicie zwiększając gęstość informacji.
      Naukowcy z Uniwersytetu Oksfordzkiego poinformowali właśnie o opracowaniu metody wykorzystania polaryzacji światła do zmaksymalizowania gęstości danych. Wszyscy wiemy, że przewaga fotoniki nad elektronika polega na tym, że światło przemieszcza się szybciej i jest bardziej funkcjonalne w szerokich zakresach. Naszym celem było wykorzystanie wszystkich zalet fotoniki połączonych z odpowiednim materiałem, dzięki czemu chcieliśmy uzyskać szybsze i gęstsze przetwarzanie informacji, mówi główny autor badań, doktorant June Sang Lee.
      Jego zespół, we współpracy z profesorem C. Davidem Wrightem z University of Exeter, opracował nanowłókno HAD (hybrydyzowane-aktywne-dielektryczne). Każde z nanowłókien wyróżnia się selektywną reakcją na konkretny kierunek polaryzacji, zatem możliwe jest jednoczesne przetwarzanie danych przenoszonych za pomocą różnych polaryzacji. Stało się to bazą do stworzenia pierwszego fotonicznego procesora wykorzystującego polaryzację światła. Szybkość obliczeniowa takiego procesora jest większa od procesora elektronicznego, gdyż poszczególne nanowókna są modulowane za pomocą nanosekundowych impulsów optycznych. Nowy układ może być ponad 300-krotnie bardziej wydajny niż współczesne procesory.
      To dopiero początek tego, co możemy osiągnąć w przyszłości, gdy uda się nam wykorzystać wszystkie stopnie swobody oferowane przez światło, w tym polaryzację. Dzięki temu uzyskamy niezwykły poziom równoległego przetwarzania danych. Nasze prace wciąż znajdują się na bardzo wczesnym etapie, dlatego też szacunki dotyczące prędkości pracy takiego układu wciąż wymagają eksperymentalnego potwierdzenia. Mamy jednak niezwykle ekscytujące pomysły łączenia elektroniki, materiałów nieliniowych i komputerów, komentuje profesor Harish Bhakaran, który od ponad 10 lat prowadzi prace nad wykorzystaniem światła w technologiach obliczeniowych.
      Ze szczegółami pracy można zapoznać się w artykule Polarisation-selective reconfigurability in hybridized-active-dielectric nanowires opublikowanym na łamach Science Advances.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Krwawienie z naczyń krwionośnych podczas operacji neurochirurgicznych to poważny problem. Krew zasłania pole widzenia i konieczne jest jej usuwanie. Dlatego pole operacyjne, w którym nie pojawiałaby się krew czyniłoby cały zabieg bardziej precyzyjnym i bezpiecznym. Naukowcy z University of Texas w Austin i University of California, Irvine, opracowali właśnie laserową platformę do bezkrwawej resekcji tkanki mózgowej.
      Obecnie podczas zabiegów neurochirurgicznych, by zapewnić dobre pole widzenia, wykorzystuje się ultradźwiękowe aspiratory, po których stosuje się przyżeganie (elektrokauteryzację). Jako jednak, że obie metody stosowane są jedna po drugiej, wydłuża to operację. Ponadto przyżeganie może prowadzić do uszkodzenia części tkanki.
      Specjaliści z Teksasu i Kalifornii wykazali podczas eksperymentów na myszach, że ich nowy laser pozwala na bezkrwawą resekcję tkanki. Ich system składa się z urządzenia do koherencyjnej tomografii optycznej (OCT), które zapewnia obraz w mikroskopowej rozdzielczości, bazującego na iterbie lasera do koagulacji naczyń krwionośnych oraz wykorzystującego tul lasera do cięcia tkanki.
      Maksymalna moc lasera iterbowego wynosi 3000 W, a urządzenie pozwala na dobranie częstotliwości i długości trwania impulsów w zakresie od 50 mikrosekund do 200 milisekund, dzięki czemu możliwa jest skuteczna koagulacja różnych naczyń krwionośnych. Laser ten emituje światło o długości 1,07 mikrometra. Z kolei laser tulowy pracuje ze światłem o długości fali 1,94 mikrometra, a jego średnia moc podczas resekcji tkanki wynosi 15 W. Twórcy nowej platformy połączyli oba lasery w jednym biokompatybilnym włóknie, którym można precyzyjnie sterować dzięki OCT.
      Opracowanie tej platformy możliwe było dzięki postępowi w dwóch kluczowych dziedzinach. Pierwszą jest laserowa dozymetria, wymagana do koagulacji naczyń krwionośnych o różnych rozmiarach. Wcześniej duże naczynia, o średnicy 250 mikrometrów i większej, nie poddawały się laserowej koagulacji z powodu szybkiego wypływu krwi. Mój kolega Nitesh Katta położył podstawy naukowe pod metodę dozymetrii laserowej pozwalającej na koagulowanie naczyń o średnicy do 1,5 milimetra, mówi główny twórca nowej platformy, Thomas Milner.
      Drugie osiągnięcie to odpowiednia metodologia działań, która pozwala na osiągnięcie powtarzalnej i spójnej ablacji różnych typów tkanki dzięki głębiej penetrującym laserom. Jako, że laserowa ablacja jest zależna od właściwości mechanicznych tkanki, cięcia mogą być niespójne, a w niektórych przypadkach mogą skończyć się katastrofalną niestabilnością cieplną. Nasza platforma rozwiązuje oba te problemy i pozwala na powtarzalne spójne cięcie tkanki miękkiej jak i sztywnej, takiej jak tkanka chrzęstna.
      Na łamach Biomedical Optics Express twórcy nowej platformy zapewniają, że w polu operacyjnym nie pojawia się krew, jakość cięcia jest odpowiednia i obserwuje się jedynie niewielkie uszkodzenia termiczne tkanki.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...