Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Profesor Noam Sobel oraz współpracujący z nim Anton Plotkin, Aharon Weissbrod i Lee Sela z Instytutu Weizmanna opracowali technologię, która pozwala sterować urządzeniami za pomocą... powietrza wydmuchiwanego i wciąganego nosem. Izraelski system wykrywa zmiany ciśnienia w nozdrzach i przekłada te dane na sygnały elektryczne. Głównym celem naukowców jest umożliwienie osobom z niewładnymi kończynami sterowania wózkiem czy komunikowania się z innymi.

Technologia została przetestowana zarówno przez osoby zdrowe, jak i całkowicie sparaliżowane. Okazało się, że pozwala ona pokonać wózkiem inwalidzkim skomplikowany tor przeszkód. Umożliwia też na korzystanie z gier komputerowych z niemal taką samą prędkością jak za pomocą klawiatury czy myszy.

Wdychanie i wydychanie powietrza nosem to bardzo precyzyjny i łatwy do kontrolowania mechanizm. Odbywa się on dzięki pomocy podniebienie miękkiego. Ono jest z kolei sterowana za pomocą nerwów połączonych bezpośrednio z mózgiem. To skłoniło Sobela i jego zespół do stwierdzenia, że nawet u osób najciężej sparaliżowanych kontrola podniebienia miękkiego została zachowana. Badania przeprowadzone za pomocą funkcjonalnego rezonansu magnetycznego pokazały, że uczeni mają rację, a w kontroli podniebienia miękkiego bierze udział kilka obszarów mózgu. Zauważono też, że obszary te w dużej mierze pokrywają się z obszarami odpowiedzialnymi za naukę mówienia, co sugerowało, iż kontrola przepływu powietrza nosem jest intuicyjna.

Izraelczycy stworzyli więc urządzenie z czujnikiem montowanym przy ujściu nozdrzy. Zbudowano też odpowiednią wersję dla osób korzystających z respiratora. Testy na zdrowych wypadły pomyślnie, urządzenie wypróbowano więc na chorych.

Jedna z pacjentek, która przeszła udar przed 7 miesiącami, po kilku dniach nauki napisała list do swojej rodziny. Z kolei pacjent, który jest sparaliżowany od 18 lat stwierdził, że nowe urządzenie jest znacznie łatwiejsze w użyciu niż systemy wykorzystujące ruchy powiek. Chorzy byli w stanie pisać listy i grać w gry komputerowe.

Nauczenie się sterowania wózkiem inwalidzkim zajmowało im 15 minut. Dwa wciągnięcia powietrza informują urządzenie, że wózek ma jechać do przodu. Dwa wydmuchnięcia powodują jazdę w tył. Wydmuchnięcie i wciągnięcie to skręt w lewo, wciągnięcie i wydmuchnięcie - w prawo. Testy pokazały, że osoba sparaliżowana od szyi w dół radzi sobie z wózkiem równie dobrze, jak osoba zdrowa.

Jako że przepływ powietrza jesteśmy w stanie precyzyjnie kontrolować, powietrze wciągamy i wydmuchujemy, podmuch może być słaby i mocny, długi i krótki, programiści będą w stanie stworzyć skomplikowany "język" umożliwiający precyzyjne sterowanie różnymi przedmiotami.

Izraelska technologia ma sporo zalet. Jest tania, prosta i łatwo się z niej korzysta. Przyda się ona nie tylko niepełnosprawnym. Może posłużyć przecież jako "trzecia ręka" pilotom czy chirurgom.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Inżynierowie z University of Massachusetts Amherst wykazali, że z niemal każdego materiału można stworzyć urządzenie pobierające energię elektryczną z pary wodnej zawartej w powietrzu. Wystarczy utworzyć w tym materiale nanopory o średnicy mniejszej niż 100 nanometrów. To niezwykle ekscytujące. Otworzyliśmy drogę do wytwarzania czystej energii z powietrza, cieszy się główny autor artykułu opisującego badania, świeżo upieczony inżynier Xiaomeng Liu.
      Powietrze zawiera olbrzymie ilości energii elektrycznej. Weźmy na przykład chmurę, która jest niczym innym jak masą kropelek wody. Każda z tych kropelek zawiera ładunek elektryczny i w odpowiednich warunkach dochodzi do wyładowania. Nie potrafimy jednak pozyskiwać energii z tych wyładowań. Natomiast my stworzyliśmy niewielką chmurę, która wytwarza energię w sposób przewidywalny, możemy więc ją zbierać, dodaje profesor Jun Yao.
      U podstaw najnowszego odkrycia znajduje się praca Yao i Dereka Levleya, którzy w 2020 roku wykazali, że możliwe jest nieprzerwane pozyskiwanie energii elektrycznej z powietrza za pomocą specjalnego materiału złożonego z nanokabli zbudowanych z białek bakterii Geobacter sulfureducens. Po tym, jak dokonaliśmy tego odkrycia zauważyliśmy, że tak naprawdę zdolność pozyskiwania energii z powietrza jest wbudowana w każdy materiał, który posiada pewne właściwości, mówi Yao. Wystarczy, by materiał ten zawierał pory o średnicy mniejszej niż 100 nanometrów, czyli ok. 1000-krotnie mniejszej niż średnica ludzkiego włosa.
      Dzieje się tak dzięki parametrowi znanemu jako średnia droga swobodna. Jest to średnia odległość, jaką przebywa cząsteczka przed zderzeniem z inną cząsteczką. W tym wypadku mowa o cząsteczce wody w powietrzu. Średnia droga swobodna wynosi dla niej około 100 nanometrów. Yao i jego zespół zdali sobie sprawę, że mogą wykorzystać ten fakt do pozyskiwania energii elektrycznej. Jeśli ich urządzenie będzie składało się z bardzo cienkiej warstwy dowolnego materiału pełnego porów o średnicy mniejszej niż 100 nanometrów, wówczas molekuły wody będą wędrowały z górnej do dolnej części takiego urządzenia. Po drodze będą uderzały w krawędzie porów. Górna część urządzenia będzie bombardowana większą liczbą cząstek wody, niż dolna. Pojawi się w ten sposób nierównowaga ładunków jak w chmurze, której górna część jest bardziej naładowana niż dolna. W ten sposób powstanie bateria, która będzie działała dopóty, dopóki w powietrzu jest wilgoć.
      To bardzo prosty pomysł, ale nikt wcześniej na niego nie wpadł. Otwiera to wiele nowych możliwości, mówi Yao. Jako, że tego typu urządzenie można zbudować praktycznie z każdego materiału, można je umieścić w różnych środowiskach. Możemy wybrazić sobie takie baterie z jednego materiału działające w środowisku wilgotnym, a z innego – w suchym. A że wilgoć w powietrzu jest zawsze, to urządzenie będzie działało przez całą dobę, niezależnie od pory dnia i roku.
      Poza tym, jako że powietrze rozprzestrzenia się w trzech wymiarach, a my potrzebujemy bardzo cienkiego urządzenia, cały system bardzo łatwo można skalować, zwiększając jego wydajność i pozyskując nawet kilowaty mocy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Podczas wykopalisk w Bidwell West w pobliżu Milton Keynes w Wielkiej Brytanii specjaliści z Cotswold Archeology znaleźli średniowieczny budynek oraz inne struktury z tego okresu. Najciekawszym jednak odkryciem jest duży kościany fragment gry, który prawdopodobnie został wykonany na obrabiarce. Podobne zabytki, pochodzące z XI-XIII wieku, znajdowano już wcześniej. Były one wykorzystywane prawdopodobnie podczas różnych gier, zwykle dwuosobowych, podczas których używano kostki i planszy.
      Najnowsze znalezisko wykonano z krowiej żuchwy, a okrągły kształt nadano mu na obrabiarce. Przedmiot został ozdobiony koncentrycznymi kręgami oraz kropkami i kółkami. Naukowcy przypuszczają, że służył do gry w tabulę, chociaż nie można tego jednoznacznie stwierdzić. Niewiele też wiemy o zasadach starożytnych gier. Rzadko kiedy bowiem zachowały się one w całości, brak też jednoznacznych opisów ich zasad. Naukowcy próbują odtworzyć zasady na podstawie zachowanych fragmentów gier oraz ikonografii.
      Ludzkość od tysięcy lat gra w planszówki. W czasach rzymskich gra o nazwie duodecim scripta była jedną z pierwszych, które trafiły na Wyspy Brytyjskie. Wiemy, że wykorzystywano tutaj planszę składającą się z trzech rzędów po 12 pól. Niewykluczone, że to od niej pochodzi gra tabula, która była popularna również w średniowieczu. To gra podobna do tryktraka, używano w niej 24 pól ułożonych w dwóch rzędach. Prawdopodobnie znaleziony właśnie przedmiot służył do gry w tabulę.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dziecięce nosy mogą być kluczem do rozwiązania zagadki dotyczącej poważnych infekcji płuc. Naukowcy odkryli, że skład mikrobiomu nosów dzieci cierpiących na schorzenia układu oddechowego jest zmieniony w porównaniu z mikrobiomem nosów dzieci zdrowych. To spostrzeżenie może przyczynić się do opracowania lepszych metod diagnostyki i leczenia poważnych chorób płuc.
      Różnica pomiędzy mikrobiomami pozwala bowiem przewidzieć, jak długo chore dziecko musi przebywać w szpitalu. Jednak, co wydaje się równie ważne, umożliwia stwierdzenie, które z dzieci mogą wyzdrowieć w sposób naturalny, zatem mogą uniknąć zażywania antybiotyków.
      Naukowcy mówią, że wyniki ich badań pozwalają zrozumieć, dlaczego niektóre dzieci są bardziej podatne na zachorowania. To zaś może pomóc z zapobieganiu rozwoju poważnych chorób.
      Choroby dolnych dróg oddechowych to na całym świecie główna przyczyna śmierci dzieci poniżej piątego roku życia. Brytyjsko-holenderski zespół naukowy pobrał próbki od ponad 150 dzieci cierpiących na choroby dolnych dróg oddechowych i porównał wyniki z próbkami od 300 zdrowych dzieci. Okazało się, ze mikrobiom tylnych części nosa i gardła był powiązany z mikrobiomem płuc, co znakomicie ułatwia stawianie diagnozy i leczenie.
      Dzieci cierpiące na choroby dolnych dróg oddechowych miały inny profil mikrobiomu, występowały u nich różna typy oraz ilości wirusów i bakterii, niż u dzieci zdrowych.
      Na podstawie samego tylko badania mikrobiomu – w połączeniu z informacją o wieku dziecka – naukowcy byli w stanie, niezależnie od widocznych objawów, stwierdzić, czy dane dziecko jest chore czy zdrowie. Profil mikrobiomu pozwolił też na przewidzenie, jak długo dziecko będzie hospitalizowane, był więc dobrym markerem stopnia infekcji.
      Eksperci mówią, że ich badania zrywają z tradycyjnym podejściem do chorób dolnych dróg oddechowych, kiedy to na podstawie objawów lekarz próbuje przewidzieć, czy mamy do czynienia z infekcją bakteryjną, czy wirusową.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Masowe polowania na wieloryby, które mogły zagrozić istnieniu wielu gatunków, mogły rozpocząć się o wiele wieków wcześniej, niż się obecnie uważa. Tak przynajmniej twierdzą archeolodzy z Uppsali i Yorku, którzy na łamach European Journal of Archeology zaprezentowali wyniki swoich najnowszych badań.
      W szwedzkich muzeach można znaleźć tysiące egzemplarzy gier planszowych pochodzących z epoki żelaza. Szczegółowe badania ujawniły, że materiał większości z nich to kości wielorybów upolowanych w połowie VI wieku naszej ery. Wspomniane gry były wytwarzane według tych samych standardów i produkowano je w dużych ilościach, co oznacza, że potrzebne były stałe dostawy dużych ilości materiału. Jako, że znalezienie padłego wieloryba na brzegu nie jest rzeczą łatwą, badacze uważają, że wspomniane gry to dowód na celowe polowania na wieloryby.
      Naukowcy wykorzystali technikę spektrometrii mas, za pomocą której zbadali niewielką liczbę gier, by ustalić, z jakiego gatunku walenia pochodziły kości. Okazało się, że wszystkie przeanalizowane egzemplarze pochodziły od wala biskajskiego. To przedstawiciel rodzaju Eubalaena, którego anglojęzyczna nazwa brzmi „right whale”, gdzie „right” to ni mniej, ni więcej co „właściwy do upolowania”. Zwierzęta te były ulubionymi ofiarami wielorybników, gdyż są powolne, pływają blisko wybrzeży i zawierają tyle tłuszczu, że nie toną po zabiciu. Jak twierdzą autorzy najnowszych badań, nie tylko XVIII- i XIX-wieczni wielorybnicy masowo zabijali te zwierzęta.
      Gry planszowe z wielorybich kości pojawiają się na północy Norwegii w tym samym czasie, co wielkie hangary na łodzie i urządzenia do wytapiania tłuszczu. To najprawdopodobniej w Norwegii były wytwarzane gry, które później trafiały do Szwecji, gdzie były składane jako dary podczas ceremonii pogrzebowych.
      Początki masowych polowań na wieloryby giną w pomroce dziejów. Znane nam źródła pisane sięgają epoki Wikingów. Sagi z IX wieku opowiadają o norweskim kupcu Ottarze, goszczącym na dworze króla Alfreda Wielkiego, który często polował na wielkie wieloryby. Jednak specjaliści wątpią, czy sagi te opisują prawdziwe wydarzenia.
      Obecność tysięcy gier planszowych wykonanych w krótkim czasie z kości wali biskajskich, w połączeniu z innymi badaniami archeologicznymi, to dowód na szybko rosnącą eksploatację ekosystemu morskiego przez człowieka. Sporo też mówi o sieciach handlowych z tamtego okresu.
      Powyższe badania posłużą też do pogłębienia naszej wiedzy o wpływie człowieka na ekosystem morski oraz populację waleni. Pokazują one bowiem, że masowe polowania na wieloryby zaczęły się na setki lat wcześniej, niż sądziliśmy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Tim Sweeney, założyciel firmy Epic Games stwierdził podczas zakończonej właśnie konferencji DICE Summit, jeszcze za naszego życia doczekamy fotorealistycznych gier 3D renderowanych w czasie rzeczywistym. Sweeney zauważył, że każde kolejne udoskonalenie techniczne pojawiające się w grach od Ponga po Crisis wiedzie nas ku takim właśnie grom.
      Granicę fotorealizmu wyznaczają możliwości ludzkiego oka. Organ ten jest w stanie przetworzyć 30-megapikselowy obraz z prędkością około 70 klatek na sekundę. Zdaniem Sweeneya, żeby oddać wszelkie subtelności obrazu, gry światła, interakcje poszczególnych elementów wirtualnego świata, by stworzyć w czasie rzeczywistym fotorealistyczną trójwymiarową scenę potrzebna jest moc obliczeniowa rzędu 5000 teraflopsów. Tymczasem obecnie najbardziej wydajne karty graficzne oferują 2,5 teraflopsa. Przepaść jest ogromna, jednak wystarczy uświadomić sobie, że w 1993 roku gdy na rynek trafiła gra Doom, wiele osób nie mogło z niej skorzystać, gdyż wymagała ona od karty graficznej mocy rzędu 10 megaflopsów. Różnica pomiędzy wydajnością ówczesnych kart graficznych, a kart używanych obecnie, jest zatem znacznie większa, niż pomiędzy dzisiejszymi kartami, a urządzeniami, jakich będziemy potrzebowali w przyszłości.
      Oczywiście moc obliczeniowa to nie wszystko. Wciąż bowiem nie istnieją algorytmy, które pozwoliłyby na realistyczne odwzorowanie wielu elementów. Specjaliści potrafią stworzyć realistyczny model skóry, dymu czy wody, jednak wciąż poza naszymi możliwościami jest stworzenie dokładnych modeli ludzkiego ruchu czy mowy. Nie mamy algorytmów, więc nawet gdybyśmy już dzisiaj dysponowali doskonałym komputerem ograniczałaby nas nie jego moc obliczeniowa, a nasze umiejętności tworzenia algorytmów - mówi Sweeney.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...