Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Pitagoras wierzył, że Wszechświat oparty jest na tej samej harmonii, co muzyka, a niebiańskie sfery grają nieustannie symfonię. Po tysiącach lat musimy mu oddać honor: fizycy pracujący w Wielkim Zderzaczu Hadronów wykorzystali go do... tworzenia muzyki z cząstek elementarnych.

Wielki Zderzacz Hadronów (Large Hadron Collider, LHC) to jeden z największych eksperymentów w historii nauki. Olbrzymi cyklotron umieszczony w ośrodku CERN na granicy Francji i Szwajcarii ma na celu odkrycie nowych cząstek elementarnych, których istnienie przewidziano teoretycznie, a których nikt jeszcze nie zaobserwował. Rozpędzane do wielkich prędkości wiązki protonów zderzają się w kolistym, dwudziestosiedmiokilometrowym tunelu i rozpadają na mniejsze elementy, które z kolei rejestrowane są przez superczułą aparaturę.

Dane z rejestratorów gromadzone są do dalszej analizy. Doktor Lily Asquith przetworzyła takie dane w zapis nutowy i muzykę. Cząsteczki o różnej energii, rejestrowane przez kolejne sekcje aparatu ATLAS, odpowiadają kolejnym nutom. Wykorzystano też symulację komputerową, żeby stworzyć dźwięk, jaki prawdopodobnie będzie wydawać poszukiwany bozon Higgsa - najbardziej poszukiwana cząsteczka elementarna.

Wszystkie skomponowane w ten sposób utwory można znaleźć na stronie projektu, posłuchać, ściągnąć, poczytać o ich znaczeniu, a także dowolnie wykorzystać: wszystkie są dostępne na licencji Creative Commons. Są też zapisy nutowe. Sama „kosmiczna muzyka" brzmi dość awangardowo, ale przyjemnie dla ucha. Nadaje się na przykład doskonale do zilustrowania jakiegoś filmu science-fiction. Na YouTube pojawiają się już pierwsze filmy z wykorzystaniem muzyki „skomponowanej" na LHC.

Dr Asquith nie chodziło jednak o zabawę, czy zwariowany teoretyczny eksperyment. Uważa ona, że w ten sposób będzie można „na słuch" rozpoznać wygenerowanie przez LHC poszukiwanej cząstki. Jej zdaniem ucho ludzkie łatwiej niż oko rozpozna charakterystyczne, poszukiwane wzory wśród wielu innych.

Informatycy mogą znać anegdotę, według której podobną sztuczkę stosowano w początkach ery komputerów, kiedy zajmowały one jeszcze wielkie pomieszczenia a zamiast klawiatur i monitorów używano kart perforowanych. Inżynierowie obsługujący centra obliczeniowe podpinali często wyjście procesora do głośnika, żeby oceniać jego pracę „na słuch". Dzięki temu od razu rozpoznawali, czy napisany program wykonuje się prawidłowo, czy też się „zawiesił". Jak widać, dobre, muzykalne ucho bywa przydatne w każdej dziedzinie nauki.

Oto jak może brzmieć bozon Higgsa:

 

http://www.youtube.com/watch?v=Q0Xi6XWaIYA&hl=pl_PL&fs=1

Share this post


Link to post
Share on other sites
Inżynierowie obsługujący centra obliczeniowe podpinali często wyjście procesora do głośnika

Ciekawe dlaczego teraz się tej metody nie stosuje  :D

Share this post


Link to post
Share on other sites

@WhizzKid chyba nigdy nie słuchałeś ani trash metalu ani popu, ewentualnie masz drewniane ucho :D

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Uczeni pracujący przy eksperymencie ATLAS w CERN donieśli o zaobserwowaniu pierwszego przypadku jednoczesnego powstania trzech masywnych bozonów W (produkcja WWW), które pojawiły się w wyniku zderzeń prowadzonych w Wielkim Zderzaczu Hadronów.
      Bozony W, jako nośniki oddziaływań elektrosłabych, odgrywają kluczową rolę w testowaniu Modelu Standardowego. Po raz pierwszy zostały odkryte przed 40 laty i od tamtej pory są przedmiotem badań fizyków.
      Naukowcy z ATLAS przeanalizowali dane zarejestrowane w latach 2015–2018 i oznajmili, że zauważyli produkcję WWW z poziomem ufności rzędu 8,2 sigma. To znacznie powyżej 5 sigma, gdy już można powiedzieć o odkryciu. Osiągnięcie tak dużej pewności nie było łatwe. Naukowcy przeanalizowali około 20 miliardów zderzeń, wśród których zauważyli kilkaset przypadków produkcji WWW.
      Bozon W może rozpadać się na wiele różnych sposobów. Specjaliści skupili się na czterech modelach rozpadu WWW, które dawały największe szanse na odkrycie poszukiwanego zjawiska, gdyż powodują najmniej szumów tła. W trzech z tych modeli dwa bozony W rozpadają się w elektrony lub miony o tym samym ładunku oraz neutrina a trzeci bozon W rozpada się do pary kwarków. W czwartym z modeli wszystkie bozony W rozpadają się w leptony (elektrony lub miony) i neutrino.
      Dzięki odkryciu specjaliści będą mogli poszukać teraz interakcji, które wykraczają poza obecne możliwości LHC. Szczególnie interesująca jest możliwość wykorzystania procesu produkcji WWW do badania zjawiska polegającego na wzajemnym rozpraszaniu się dwóch bozonów W.
      Więcej na temat najnowszego odkrycia w artykule Observation of WWW production in pp collisions at s√=13 TeV with the ATLAS detector [PDF].

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badacze z całego świata będą po raz drugi debatować nad przyszłością nowego kierunku badań w Wielkim Zderzaczu Hadronów pod Genewą, który ma zaowocować szczegółowymi pomiarami wysokoenegetycznych neutrin oraz otworzy nowe drogi poszukiwań ciemnej materii. Współautorem dyskutowanej propozycji nowego eksperymentu FLArE jest dr Sebastian Trojanowski z AstroCeNT i Zakładu Fizyki Teoretycznej NCBJ.
      Planowane ponowne uruchomienie Wielkiego Zderzacza Hadronów jest jednym z najbardziej wyczekiwanych wydarzeń w świecie fizyki. Przy tej okazji, zostanie również zainicjowany nowy kierunek badań w LHC, obejmujący pomiary wysokoenergetycznych neutrin oraz poszukiwania śladów nowej fizyki w kierunku wzdłuż osi wiązki zderzenia protonów. Ten nietypowy sposób wykorzystania zderzacza został zaproponowany przez autorów koncepcji detektora FASER (odnośniki w uzupełnieniu). Jednym z jego pomysłodawców był dr Sebastian Trojanowski związany z ośrodkiem badawczym AstroCeNT przy Centrum Astronomicznym im. Mikołaja Kopernika PAN oraz z Narodowym Centrum Badań Jądrowych.
      Choć eksperyment FASER ma dopiero zacząć zbierać dane w najbliższym czasie, to już zadajemy sobie pytanie, jak rozwinąć ten pomysł do jeszcze ambitniejszego projektu w dalszej przyszłości – mówi dr Trojanowski. Dyskusje na ten temat zgromadzą w dniach 27-28 maja (w formule zdalnej) około 100 badaczy z całego świata zajmujących się fizyką cząstek elementarnych. Na spotkaniu inżynierowie z CERN zaprezentują również wstępne plany dotyczące budowy nowego laboratorium podziemnego, które mogłoby pomieścić większą liczbę eksperymentów skupionych wzdłuż osi wiązki zderzenia. Jest to projekt długofalowy, który ma na celu maksymalizację potencjału badawczego obecnego zderzacza, który powinien służyć nauce jeszcze wiele lat.
      Wśród kilku eksperymentów proponowanych do umieszczenia w nowym laboratorium jest m.in. bezpośredni spadkobierca detektora FASER. Eksperyment, nazwany roboczo FASER 2, znacząco poszerzyłby potencjał odkrywczy obecnego detektora. Choć ani obecny, ani proponowany przyszły eksperyment nie dają możliwości bezpośredniej obserwacji ciemnej materii, to umożliwiają one poszukiwanie postulowanych teoretycznie niestabilnych cząstek, które mogą pośredniczyć w jej oddziaływaniach.
      O krok dalej idą autorzy kwietniowego artykułu opublikowanego w czasopiśmie Physical Review D, prof. Brian Batell z Uniwersytetu w Pittsburgu w USA, prof. Jonathan Feng z Uniwersytetu Kalifornijskiego w Irvine oraz dr Trojanowski. Proponują oni sposób na bezpośrednią obserwację lekkich cząstek ciemnej materii w nowym laboratorium. W tym celu sugerują umieszczenie tam nowego detektora, nazwanego FLArE (ang. Forward Liquid Argon Experiment), wykorzystującego technologię ciekło-argonowej komory projekcji czasowej oraz wstępny sygnał w postaci błysku (ang. flare) scyntylacyjnego. Detektor taki byłby nowym narzędziem do bezpośredniego poszukiwania cząstek ciemnej materii poprzez badanie ich oddziaływań przy bardzo wysokich energiach oraz przy laboratoryjnie kontrolowanym strumieniu takich cząstek. Jest to metoda wysoce komplementarna względem obecnych podziemnych eksperymentów poszukujących cząstek pochodzących z kosmosu lub produkowanych przez promieniowanie kosmiczne – argumentuje dr Trojanowski.
      Pomysł na nowy detektor FLArE został błyskawicznie włączony we wstępne plany inżynieryjne nowego laboratorium oraz w dyskusje eksperymentalne, również te dotyczące przyszłych badań neutrin w LHC. Czas pokaże, czy projekt ten będzie kolejnym sukcesem na miarę FASERa, czy też zostanie zastąpiony jeszcze lepszym rozwiązaniem – komentuje dr Trojanowski. Jedno jest pewne: fizycy nie próżnują i nie ustają w wysiłkach w celu lepszego poznania praw rządzących naszym światem.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Wielkim Zderzaczu Hadronów zainstalowano nowe urządzenie o nazwie FASER (Forward Search Experiment), którego współtwórcą jest dr Sebastian Trojanowski. FASER będzie badał cząstki, co do których naukowcy mają podejrzenie, że wchodzą w interakcje z ciemną materią. Testy nowego urządzenia potrwają do końca roku.
      To krok milowy dla tego eksperymentu. FASER będzie gotowy do zbierania danych z Wielkiego Zderzacza Hadronów, gdy tylko na nowo podejmie on pracę wiosną 2022 roku, mówi profesor Shih-Chieh hsu z University of Washington, który pracuje przy FASER.
      Eksperyment będzie badał interakcje z wysokoenergetycznymi neutrinami i poszukiwał nowych lekkich słabo oddziałujących cząstek, które mogą wchodzić w interakacje z ciemną materią. Stanowi ona około 85% materii we wszechświecie. Zbadanie cząstek, które mogą z nią oddziaływać, pozwoli na określenie właściwości ciemnej materii.
      W pracach eksperymentu FASER bierze udział 70 naukowców z 19 instytucji w 8 krajach.
      Naukowcy sądzą, że podczas kolizji w Wielkim Zderzaczu Hadronów powstają słabo reagujące cząstki, które FASER będzie w stanie wykryć. Jak informowaliśmy przed dwoma laty, w LHC mogą powstawać też niewykryte dotąd ciężkie cząstki.
      FASER został umieszczony w nieużywanym tunelu serwisowym znajdującym się 480 metrów od wykrywacza ATLAS. Dzięki niewielkiej odległości FASER powinien być w stanie wykryć produkty rozpadu lekkich cząstek. Urządzenie ma 5 metrów długości, a na jego początku znajdują się dwie sekcje scyntylatorów. Będą one odpowiedzialne za usuwanie interferencji powodowanej przez naładowane cząstki. Za scyntylatorami umieszczono 1,5-metrowy magnes dipolowy, za którym znajduje się spektrometr, składający się z dwóch 1-metowych magnesów dipolowych. Na końcu, początku i pomiędzy magnesami znajdują się 3 urządzenia rejestrujące zbudowane z krzemowych detektorów. Na początku i końcu spektrometru znajdują się dodatkowe stacje scyntylatorów. Ostatnim elementem jest elektromagnetyczny kalorymetr. Będzie on identyfikował wysokoenergetyczne elektrony i fotony oraz mierzył całą energię elektromagnetyczną.
      Całość jest schłodzona do temperatury 15 stopni Celsjusza przez własny system chłodzenia. Niektóre z elementów FASERA zostały zbudowane z zapasowych części innych urządzeń LHC.
      FASER zostanie też wyposażony w dodatkowy detektor FASERv, wyspecjalizowany w wykrywaniu neutrin. Powinien być on gotowy do instalacji pod koniec bieżącego roku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Podczas ostatnich badań w CERN zdobyto dane, które – jeśli zostaną potwierdzone – będą oznaczały, że doszło do naruszenia Modelu Standardowego. Dane te dotyczą potencjalnego naruszenia zasady uniwersalności leptonów. O wynikach uzyskanych w LHCb poinformowano podczas konferencji Recontres de Moriond, na której od 50 lat omawia się najnowsze osiągnięcia fizyki oraz w czasie seminarium w CERN.
      Podczas pomiarów dokonywanych w LHCb porównywano dwa typy rozpadu kwarków powabnych. W pierwszym z nich pojawiają się elektrony, w drugim miony. Miony są podobne do elektronów, ale mają około 200-krotnie większą masę. Elektron, mion i jeszcze jedna cząstka – tau – to leptony, które różnią się pomiędzy sobą zapachami. Zgodnie z Modelem Standardowym, interakcje, w wyniku których pojawiają się leptony, powinny z takim samym prawdopodobieństwem prowadzić do pojawiania się elektronów i mionów podczas rozpadu kwarka powabnego.
      W roku 2014 zauważono coś, co mogło wskazywać na naruszenie zasady uniwersalności leptonów. Teraz, po analizie danych z lat 2011–2018 fizycy z CERN poinformowali, że dane wydają się wskazywać, iż rozpad kwarka powabnego częściej dokonuje się drogą, w której pojawiają się elektrony niż miony.
      Istotność zauważonego zjawiska to 3,1 sigma, co oznacza, iż prawdopodobieństwo, że jest ono zgodne z Modelem Standardowym wynosi 0,1%. Jeśli naruszenie zasady zachowania zapachu leptonów zostanie potwierdzone, wyjaśnienie tego procesu będzie wymagało wprowadzenie nowych podstawowych cząstek lub interakcji, mówi rzecznik prasowy LHCb profesor Chris Parkes z University of Manchester.
      Rozpad kwarka powabnego prowadzi do pojawienia się kwarka dziwnego oraz elektronu i antyelektronu lub mionu i antymionu. Zgodnie z Modelem Standardowym w procesie tym pośredniczą bozony W+ i Z0. Jednak naruszenie zasady uniwersalności leptonów wskazuje, że zaangażowana w ten proces może być jakaś nieznana cząstka. Jedna z hipotez mówi, że jest to leptokwark, masywny bozon, który wchodzi w interakcje zarówno z leptonami jak i z kwarkami.
      Co istotne, dane z LHCb zgadzają się z danymi z innych anomalii zauważonych wcześniej zarówno w LHCb, jak i obserwowanych od 10 lat podczas innych eksperymentów na całym świecie. Nicola Serra z Uniwersytetu w Zurichu mówi, że jest zbyt wcześnie by wyciągać ostateczne wnioski. Jednak odchylenia te zgadzają się ze wzorcem anomalii obserwowanych przez ostatnią dekadę. Na szczęście LHCb jest odpowiednim miejscem, w którym możemy sprawdzić potencjalne istnienie nowych zjawisk fizycznych w tego typu rozpadach. Musimy przeprowadzić więcej pomiarów.
      LHCb to jeden z czterech głównych eksperymentów Wielkiego Zderzacza Hadronów.Jego zadaniem jest badanie rozpadu cząstek zawierających kwark powabny.
      Artykuły na temat opisanych tutaj badań zostały opublikowane na stronach arXiv oraz CERN.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      CERN udostępnił swój pierwszy publiczny Raport Środowiskowy, dotyczący m.in. emisji gazów cieplarnianych. Dowiadujemy się z niego, że w 2018 roku ta instytucja wyemitowała 223 800 ton ekwiwalentu dwutlenku węgla. To tyle co duży statek wycieczkowy.
      Z raportu dowiadujemy się, że aż 3/4 tej emisji powodują zawierające fluor gazy, używane podczas prac z wykrywaczami cząstek. CERN planuje zmniejszenie emisji.
      Obejmujący lata 2017–2018 raport sprowokował debatę zarówno wśród pracowników, jak i wśród osób z zewnątrz. Zaczęliśmy zastanawiać się, co można zrobić z tym już teraz i w jaki sposób projektować akceleratory przyszłości, mówi Frederick Bordry, dyrektor CERN ds. akceleratorów i technologii.
      Raport porusza wszelkie kwestie związane z wpływem CERN na środowisko, od emitowanego hałasu, po wpływ na bioróżnorodność, zużycie wody czy emitowane promieniowanie. Specjaliści orzekli, że to redukcja gazów cieplarnianych będzie miała największy wpływ na poprawę stanu środowiska. Inżynierowie już planują uszczelnienie miejsc wycieków w LHC i zoptymalizowanie systemu cyrkulacji gazu. Docelowo chcą, żeby w roli chłodziwa czujników gazy zawierające fluor zostały zastąpione przez dwutlenek węgla, który ma kilka tysięcy razy mniejszy potencjał cieplarniany. Gdy budowaliśmy Wielki Zderzacz Hadronów, nie docenialiśmy potencjału cieplarnianego tych gazów. Naszym głównym zmartwieniem była dziura ozonowa, mówi Bordry. Na razie CERN chce obniżyć swoją bezpośrednią emisję gazów cieplarnianych o 28% do roku 2024.
      Raport uwzględnia też pośrednią emisję generowaną przez CERN. Laboratorium zużywa bowiem tyle energii elektrycznej co niewielkie miasteczko. Zakładamy w LHC systemy odzyskiwania energii. Jesteśmy pionierami wykorzystania nadprzewodnictwa na duża skalę, co może zwiększyć efektywność sieci energetycznych.
      Jak jednak zauważają specjaliści, znacznie lepiej jest emitować gazy cieplarniane w celu dokonywania odkryć naukowych, niż w innych celach. Postęp naukowy jest bardzo ważny i trudno znaleźć ważniejszą instytucję naukową niż CERN. Osobiście wolę, byśmy emitowali gazy cieplarniane pracując w CERN niż lecąc samolotem do Pragi, by się upić na weekend, mówi John Barrett, z Sustainability Research Institute.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...