Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Baterie słoneczne są znane od bardzo dawna. Mimo, że dają one energię elektryczną „za darmo" na drodze do ich upowszechnienia stoi cena produkcji - świadomość, że pieniądze zainwestowane w zasilanie energią słońca zwrócą się nie wiadomo kiedy, nie zachęca kupujących. Nawet nacisk na ekologię i zmniejszenie emisji gazów cieplarnianych niewiele w tej materii zmienił. Od dawna szukano lepszych rozwiązań, przede wszystkim tańszych, licząc, że nawet niższa wydajność za znacznie obniżoną cenę zwiększy dostępność tej technologii. Z drugiej strony poszukuje się sposobów na zwiększenie wydajności. Te dwa dążenia pogodzi technologia wdrażana właśnie w firmie Semprius.

Wydajność typowych komercyjnych ogniw, opartych na krystalicznym krzemie wynosi 14-19%, na tańszym krzemie amorficznym zaledwie 8%. Zwiększyć można ją w zasadzie bardzo łatwo, zamiast krzemu stosując arsenek galu lub arsenek selenu, teoretycznie nawet do około 40%. Niestety, dwukrotny przyrost wydajności kosztuje aż sto razy więcej - taka jest różnica w cenie technologii krzemowej i arsenkowej, czyniąc tę drugą całkowicie nieopłacalną w komercyjnych zastosowaniach.

Na arsenek galu z nadzieją spoglądają nie tylko technolodzy od ogniw fotowoltaicznych, ale także elektroniki półprzewodnikowej. Zastąpienie krzemu arsenkiem galu pozwoliłoby na budowę znacznie szybszych układów scalonych, nad technologiami pracuje na przykład Intel. Cały czas przeszkodę stanowi jednak cena, która jest pochodną skomplikowanego procesu produkcji.

Żeby wyprodukować panel słoneczny z arsenku galu, trzeba wyhodować odpowiednio czyste kryształy tego półprzewodnika. Odbywa się to w warunkach wysokiej próżni, w wysokiej temperaturze, gdzie w odpowiedniej komorze kontrolującej warunki kryształ rośnie na specjalnym podłożu. Bardzo drogim podłożu. Później jest cięty na na kawałki, składany i mocowany. Podczas cięcia niestety zniszczeniu ulega kosztowne podłoże, a otrzymujemy tylko jedną warstwę kryształu, czyste marnotrawstwo. Dodatkowy koszt to czas procesu: przygotowanie, a potem opróżnienie komory trwa dłużej, niż sam proces hodowania półprzewodnika.

 

Ale nie ma problemu nie do rozwiązania

 

Sposób na ominięcie tych trudności opracował profesor John Rogers, wykładowca materiałoznawstwa i inżynierii na Uniwersytecie Illinois w Urbana-Champaign. Znalazł on sposób na jednoczesne wytwarzanie wielu cienkich warstw krystalicznego arsenku galu bez żadnej utraty jakości. W opracowanej przez niego technologii szereg warstw rośnie jednocześnie, warstwy pożądanego przez nas półprzewodnika przedzielone są bowiem rosnącymi jednocześnie warstewkami arsenku glinu. Taki produkt jest następnie kąpany w roztworze chemicznym, który rozpuszcza niepotrzebny arsenek glinu.

W wyniku otrzymujemy błony krystalicznego arsenku galu, gotowe do wykorzystania. Jak łatwo się domyślić, każda dodatkowa warstwa wytwarzana jednocześnie to mniejszy koszt. Hodując ich po dziesięć otrzymujemy już dziesięciokrotny spadek kosztów podłoża i taką samą oszczędność czasu. Ponieważ technologia jest w pełni skalowalna, realne jest jednoczesne wytwarzanie stu, czy więcej błon. Dodatkowy zysk to oszczędność materiału, niebagatelny, zważywszy na koszt arsenku galu.

Technologia wdrażana w firmie Semprius w Durham, w Północnej Karolinie, ma też inne zalety. Otrzymane błony można łatwo umieszczać na dowolnych podkładach, również giętkich, otrzymując ogniwa elastyczne.

Prof. Rogers opracował kilka lat temu analogiczną technologię do wytwarzania wielkoformatowych błon z krystalicznego krzemu, obecnie zaadoptował ją właśnie do arsenku galu. Zapewnia, że metoda nadaje się do każdego krystalicznego półprzewodnika, jest to tylko kwestia znalezienia odpowiedniego materiału oddzielającego, który można bezpiecznie rozpuścić. W planach ma znalezienie właściwej formuły chemicznej dla azotku galu, który pracuje dobrze w widzialnym spektrum światła.

W przeciwieństwie do wielu dotąd wymyślonych sposobów na lepsze ogniwa słoneczne, które zakończyły żywot na etapie prototypu, ta technologia ma szansę naprawdę wywołać małą rewolucję - firma Semprius zapowiada dostarczenie na rynek pierwszych komercyjnych egzemplarzy jeszcze przed końcem roku.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Artykuł, opublikowany w Nature Communications przez Hidekiego Hiroriego, zapowiada przełom w budowie urządzeń wykorzystujących tranzystory. Odkrycie japońskich uczonych z Kyoto University może prowadzić do pojawienia się niezwykle szybkich tranzystorów oraz bardzo wydajnych ogniw fotowoltaicznych.
      Naukowcy pracując ze standardowym arsenkiem galu zaobserwowali, że poddanie próbki działaniu krótkiego impulsu pola elektrycznego o częstotliwości przekraczającej teraherc, spowodowało pojawienie się w niej prawdziwej lawiny par elektron-dziura (ekscytonów).
      Wystarczyło włączenie pojedynczego impulsu trwającego pikosekundę, by gęstość ekscytonów, w porównaniu ze stanem wyjściowym próbki, zwiększyła się 1000-krotnie.
      Badania nad zastosowaniem terahercowych częstotliwości prowadzone są w laboratorium profesora Koichiro Tanaki, który chce stworzyć dzięki nim mikroskop pozwalający na obserwowanie w czasie rzeczywistym żywych komórek. Wpływ takich częstotliwości na półprzewodnik to efekt uboczny badań, pokazujący jednak, jak wielkie możliwości drzemią w terahercowych częstotliwościach.
    • przez KopalniaWiedzy.pl
      Naukowcy z University of Illinois zaobserwowali w grafenie zjawisko termoelektryczne i odkryli, że w nanoskali materiał ten chłodzi się efektywniej niż krzem. Zespół pracujący pod kierunkiem profesora Williama Kinga wykorzystał końcówkę mikroskopu sił elektronowych w roli czujnika temperatury. Uczeni dowiedzieli się, że w miejscu, w którym grafenowy tranzystor dotyka metalowych połączeń, chłodzący efekt termoelektryczny jest silniejszy niż ogrzewanie się materiału wywołane oporami w przepływie prądu. Oznacza to, że w tym miejscu tranzystor samodzielnie się schładza.
      Zjawisko termoelektryczne zachodzi wskutek bezpośredniej transformacji napięcia elektrycznego pomiędzy dwoma punktami na różnicę temperatur.
      W krzemie i większości materiałów nagrzewanie się spowodowane przepływem prądu jest znacznie większe niż samodzielne chłodzenie. Odkryliśmy jednak, że w tych tranzystorach grafenowych istnieją miejsca, w których chłodzenie jest większe niż nagrzewanie, co pozwala urządzeniom na samodzielne schłodzenie się. Dotychczas nie obserwowano tego zjawiska w grafenie - mówi King.
      Dzięki nowo odkrytej kolejnej przydatnej właściwości grafenu, elektronika grafenowa, o ile powstanie, będzie wymagała niewiele wspomaganego chłodzenia, a niewykluczone, że obejdzie się bez niego.
    • przez KopalniaWiedzy.pl
      Zdolność półprzewodnikowych ogniw słonecznych do wykorzystywania światła naszej gwiazdy zależy od przerw energetycznych charakteryzujących użyte materiały. Jako że żaden półprzewodnik nie ma odpowiednich właściwości pozwalających mu na pracę z całym spektrum światła, dotychczas opracowane ogniwa, które potrafią je wykorzystywać, zbudowane są z wielu warstw różnych półprzewodników. To z kolei powoduje, że ich produkcja jest na tyle kosztowna, iż żadne takie ogniwa nie są dostępne w sprzedaży na rynku konsumenckim.
      Władysław Walukiewicz i kierowany przezeń zespół Solar Energy Materials Research Group w Lawrence Berkeley National Laboratory stworzyli właśnie ogniwa, które nie tylko współpracują z całym spektrum światła słonecznego, ale ich produkcja jest łatwa i tania.
      Walukiewicz i Kin Man Yu od 2002 roku pracują nad znalezieniem odpowiednich materiałów na ogniwa słoneczne. Mają na swoim koncie spore osiągnięcia, jednak wszystkie dotychczas opracowane materiały były drogie i trudne w produkcji.
      Tym razem naukowcy wykorzystali powszechnie używany w przemyśle półprzewodnikowym arsenek galu, ale zastąpili w nim część atomów arsenu azotem. Wprowadzili w ten sposób do materiału kolejną przerwę energetyczną, a uzyskany tak materiał można produkować za pomocą metody MOCVD (metaloorganiczne chemiczne osadzanie z fazy gazowej), która jest obecnie szeroko stosowana w przemyśle.
      Arsenek galu wzbogacony azotem znany jest od lat, ale osiągnięciem zespołu Walukiewicza jest odpowiednia architektura przerw energetycznych. Uczeni założyli, że warunkiem działania ich ogniwa będzie dobre odizolowanie pośredniej przerwy od miejsc, w których gromadzone są ładunki elektryczne. Przerwa pośrednia musi absorbować światło, ale nie może przewodzić prądu - wyjaśnia Walukiewicz. Testowe urządzenie gromadziło elektrony z przerwy przewodzącej i dziury z przerwy walencyjnej. Przerwa środkowo była zablokowana i od góry i od dołu. Dla porównania stworzono niemal identyczne urządzenie, w którym przerwa pośrednia była zablokowana tylko od góry.
      Testy wykazały, że urządzenie docelowe - to z zablokowaną przerwą - bardzo dobrze odpowiada na światło słoneczne i reaguje na spektrum od podczerwieni (1,1 eV) do ultrafioletu (3,2 eV).
      Z kolei urządzenie z odblokowaną przerwą pośrednią dobrze reagowało tylko na bliską podczerwień.
    • przez KopalniaWiedzy.pl
      O metamateriałach pisaliśmy już wielokrotnie, również w kontekście skonstruowania dzięki nim technologicznej peleryny niewidki. To, co dla światła pozostaje w sferze odległych planów, w dziedzinie dźwięku właśnie osiągnięto, tworząc materiał zapewniający niewidzialność dla sonarów.
      Sonar to nic innego, jak dźwiękowy radar, korzystający najczęściej z ultradźwięków - woda morska tłumi fale radiowe, zaś dźwięk przenosi się w niej szybko i na duże odległości (dzięki temu, że woda jest bardziej gęsta od powietrza). Wykładowca mechaniki i inżynierii na University of Illinois, Nicholas Fang, skonstruował w swoim laboratorium metamateriał wytłumiający dźwięki w zakresie stosowanym przez sonary.
      Urządzenie ma postać dysku składającego się z wielu pierścieni o malejącej średnicy. Każdy pierścień to misterna struktura wgłębień „prowadzących" falę dźwiękową, każdy ma inny współczynnik refrakcji. Wgłębienia powodują zmianę prędkości fali akustycznej i spadek jej energii, a całość powoduje uwięzienie dźwięku, wygięcie fali i „owinięcie" jej wokół zewnętrznych krawędzi dysku, niwelując niemal całkowicie odbicie dźwięku.
      Specyfiką konstrukcji jest to, że działa nie tylko dla ściśle określonej długości fali - jak to jest z metamateriałami dla fal elektromagnetycznych - lecz jest skuteczne dla dość szerokiego przedziału częstotliwości, do 40 do 80 kiloherców, przy czym teoretycznie można uzyskać pokrycie przedziału częstotliwości aż do dziesiątek megaherców.
      Podwodne testy z sonarem wykazały skuteczność takiego urządzenia maskującego i rozpoczynają się prace nad zastosowaniami praktycznymi. Pierwszym, jakie się narzuca, jest oczywiście zastosowanie militarne celem stworzenia niewykrywalnych okrętów podwodnych. Są jednak i inne: na przykład doskonała izolacja akustyczna, czy polepszenie osiągów ultrasonografii medycznej. Autorzy są też przekonani, że dzięki wynalazkowi będzie można uporać się ze zjawiskiem kawitacji, czyli tworzenia się wirów i hałaśliwych pęcherzyków wokół śrub napędowych statków i okrętów podwodnych.
    • przez KopalniaWiedzy.pl
      Malaria, pasożytnicza choroba przenoszona przez moskity, wciąż jest niepowstrzymana, mimo wielu badań. Naukowcy z uniwersytetu w Chicago proponują nowy sposób, który ma zablokować przenoszenie się zarodźca malarii.
      Samice moskitów potrzebują dużych ilości krwi (a dokładniej: hemoglobiny) jako pożywienia koniecznego dla rozwoju jaj. Podczas jej pobierania roznoszą zakażenie poprzez zarodźce (Plasmodium), które wykluwają się w ich wnętrznościach. W tym złożonym, bo wymagającym dwóch różnych żywicieli, cyklu rozwojowym ważną rolę spełnia proteina FLVCR, transportująca pochodzący z hemoglobiny hem poza komórkę. Proteina ta jednocześnie chroni moskita przed stresem oksydacyjnym. John Quigley z University of Illinois w Chicago postawił hipotezę, że zakłócenie działania białka FLVCR nie pozwoli na dokończeniu cyklu rozwojowego Plasmodium i zablokuje przenoszenie się choroby.
      Podczas eksperymentu wyizolowano gen kodujący FLVCR od dwóch gatunków moskitów znanych z roznoszenia malarii i korzystając z techniki wyciszania genów, z powodzeniem zmniejszono wydatnie ilość produkowanego białka we wnętrznościach moskitów. Przed zespołem dra Quigley stoi jeszcze zbadanie czy i w jakim stopniu zablokowanie proteiny i zwiększenie stresu oksydacyjnego hamuje przenoszenie pasożyta.
      Jeśli zakłócenie funkcjonowania proteiny zahamuje przenoszenie się pasożyta Plasmodium, pojawi się potencjalna możliwość wykorzystania elementów proteiny FLVCR do stworzenia przeciwciał i wyprodukowania szczepionki dla ludzi - tłumaczy autor rozwiązania. - Wówczas przeciwciała zablokują FLVCR i zwiększą stres oksydacyjny, wskutek zarodźce malarii nie będą potrafiły doprowadzić do końca swojego cyklu życiowego, co zapobiegnie rozprzestrzenianiu się malarii.
      Na malarię co roku umiera nawet do trzech milionów ludzi, głównie dzieci (choruje co roku ponad 220 milionów), więc problem zwalczenia tej choroby jest dość palący. Niestety, fakt że choroba dotyka głównie niezamożne kraje i ludzi, nie sprzyja inwestowaniu dużych środków finansowych w badania przez firmy farmaceutyczne.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...