Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Poszukiwanie nadprzewodników pracujących w jak najwyższych temperaturach to olbrzymia gałąź nauki. Marzeniem każdego badacza na tym polu jest wynalezienie materiału oferującego nadprzewodnictwo w temperaturze pokojowej, zamiast w ultraniskich temperaturach. Jednak każdy stopień wyżej to już sukces technologiczny, pozwalający potencjalnie obniżyć koszty funkcjonowania wielu urządzeń. A także, oczywiście, przybliżający nas do zrozumienia tego zjawiska.

Odkrycie dokonane przez naukowców z uniwersytetów w Liverpoolu i Durham można chyba określić jako prawdziwy przełom. Otwiera ono drzwi do całkiem nowego podejścia. Cudownym środkiem był znów pierwiastek, który od parunastu lat rewolucjonizuje kolejne dziedziny technologii: węgiel. A dokładnie: fulereny, czyli stworzone z atomów węgla mikroskopijne sfery.

Przy wykorzystaniu infrastruktury Europejskiego Ośrodka Synchrotronu Atomowego w Grenoble, a dokładniej urządzeń ISIS oraz Diamond z Rutherford Appleton Laboratory (RAL) stworzyli oni hybrydowy materiał złożony z atomów metali oraz najprostszych fulerenowych kulek C60 (złożonych z sześćdziesięciu atomów węgla, pierwszych, jakie odkryto i najpowszechniejszych). Stworzony materiał ścisnęli, powodując zmiany jego struktury, uzyskując jego nadprzewodnictwo w wysokiej temperaturze.

Jak mówi dr Peter Baker, naukowiec operujący urządzeniem ISIS: odkrycie pozwala domniemać, że istnieje pewien ogólny trend w wysokotemperaturowych nadprzewodnikach. To wielki krok naprzód w w zrozumieniu podstaw działania nadprzewodników. Wiedza, jak właściwie funkcjonuje nadprzewodnictwo pozwoliłoby takie materiały tworzyć łatwiej, nadając im określone, pożądane przez nas właściwości. To otwarcie drzwi do nowych zastosowań i bezstratnego przesyłania energii.

Przykładowe zastosowanie wynalazku to możliwość udoskonalenia konstrukcji aparatury do funkcjonalnego rezonansu magnetycznego (MRI). Taki aparat zawiera olbrzymi magnes, który dla zachowania nadprzewodnictwa musi być zanurzony w ciekłym helu, który utrzymuje temperaturę -270 stopni Celsjusza. Możliwość zrezygnowania z drogiego i kłopotliwego chłodzenia bardzo obniżyłaby koszty i zwiększyła dostępność tej diagnostyki.

Ważną zaletą odkrycia, co podkreślają autorzy odkrycia Matthew Rosseinsky i Kosmas Prassides, jest możliwość łatwych prac nad różnymi wersjami nowego materiału. Eksperymentowanie z różnymi metalami i związkami metali, różnymi wersjami fulerenów, ciśnieniem i innymi parametrami być może pozwoli nie tylko odkryć lepsze materiały, ale zrozumieć: jak i dlaczego to właściwie działa.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Stworzony materiał ścisnęli, powodując zmiany jego struktury, uzyskując jego nadprzewodnictwo w wysokiej temperaturze. [/size] 

Czyli jakieś 700st.C ?? ( bo zwykły lód ściśnięty do 400bar staje się nadprzewodnikiem a z aluminium robi się puszki na piwo).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

...uzyskując jego nadprzewodnictwo w wysokiej temperaturze... 

 

W wysokiej temperaturze - czyli jakiej?...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Podczas jazdy rowerem najechałem na krawężnik i moje razgrzane jądra tak się skurczyły, iż zdawało mi się pędzę spadam z szybkością światła. Niestety, ucierpiała przy tym upadku moja ręka.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
nieco ponizej 40 Kelvinow

Zatem trochę im jeszcze brakuje do praktycznych zakresów(podaje z dużym przybliżeniem):

1. około -150 C , chłodzenie azotem czy też powietrzem

2. -70 suchy lód

3. ok 0 C i możemy używać nadprzewodników w niektórych krajach bez chłodzenia

4. do 40 C i nadprzewodniki znajdują naprawdę powszechne zastosowanie.

Z tego co wiem doszliśmy do 140 K.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Tak, obecnie słowo „wysokotemperaturowy” przy nadprzewodnikach jest mocno… hm, względne i faktycznie mylące.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      UWAGA: artykuł opisujący te badania został wycofany z Nature w związku z podejrzeniami o manipulowanie danymi.
      Naukowcy z University of Rochester poinformowali o osiągnięciu nadprzewodnictwa w temperaturze pokojowej. Nadprzewodnictwo to stan, w którym ładunek elektryczny może podróżować przez materiał nie napotykając żadnych oporów. Dotychczas udawało się je osiągnąć albo w niezwykle niskich temperaturach, albo przy gigantycznym ciśnieniu. Gdyby odkrycie się potwierdziło, moglibyśmy realnie myśleć o bezstratnym przesyłaniu energii, niezwykle wydajnych silnikach elektrycznych, lewitujących pociągach czy tanich magnesach do rezonansu magnetycznego i fuzji jądrowej. Jednak w mamy tutaj nie jedną, a dwie łyżki dziegciu.
      O nadprzewodnictwie wysokotemperaturowym mówi się, gdy zjawisko to zachodzi w temperaturze wyższej niż -196,2 stopni Celsjusza. Dotychczas najwyższą temperaturą, w jakiej obserwowano nadprzewodnictwo przy standardowym ciśnieniu na poziomie morza jest -140 stopni C. Naukowcy z Rochester zaobserwowali nadprzewodnictwo do temperatury 20,6 stopni Celsjusza. Tutaj jednak dochodzimy do pierwszego „ale“. Zjawisko zaobserwowano bowiem przy ciśnieniu 1 gigapaskala (GPa). To około 10 000 razy więcej niż ciśnienie na poziomie morza. Mimo to mamy tutaj do czynienia z olbrzymim postępem. Jeszcze w 2021 roku wszystko, co udało się osiągnąć to nadprzewodnictwo w temperaturze do 13,85 stopni Celsjusza przy ciśnieniu 267 GPa.
      Drugim problemem jest fakt, że niedawno ta sama grupa naukowa wycofała opublikowany już w Nature artykuł o osiągnięciu wysokotemperaturowego nadprzewodnictwa. Powodem był użycie niestandardowej metody redukcji danych, która została skrytykowana przez środowisko naukowe. Artykuł został poprawiony i obecnie jest sprawdzany przez recenzentów Nature.
      Profesor Paul Chig Wu Chu, który w latach 80. prowadził przełomowe prace na polu nadprzewodnictwa, ostrożnie podchodzi do wyników z Rochester, ale chwali sam sposób przeprowadzenia eksperymentu. Jeśli wyniki okażą się prawdziwe, to zdecydowanie mamy tutaj do czynienia ze znaczącym postępem, dodaje uczony.
      Z kolei James Walsh, profesor chemii z University of Massachusetts przypomina, że prowadzenie eksperymentów naukowych w warunkach wysokiego ciśnienia jest bardzo trudne, rodzi to dodatkowe problemy, które nie występują w innych eksperymentach. Stąd też mogą wynikać kontrowersje wokół wcześniejszej pracy grupy z University of Rochester.
      Ranga Dias, który stoi na czele zespołu badawczego z Rochester zdaje sobie sprawę, że od czasu publikacji poprzedniego artykułu jego zespół jest poddawany bardziej surowej ocenie. Dlatego też prowadzona jest polityka otwartych drzwi. "Każdy może przyjść do naszego laboratorium i obserwować, jak dokonujemy pomiarów. Udostępniliśmy recenzentom wszystkie dane", dodaje. Uczony dodaje, że podczas ponownego zbierania danych na potrzeby poprawionego artykułu współpracowali z przedstawicielami Argonne National Laboratory oraz Brookhaven National Laboratory. Dokonywaliśmy pomiarów w obecności publiczności, zapewnia.
      Materiał, w którym zaobserwowano nadprzewodnictwo w temperaturze ponad 20 stopni Celsjusza, to wodorek lutetu domieszkowany azotem. Profesor Eva Zurek ze State University of New York mówi, że potrzebne jest niezależne potwierdzenie wyników grupy Diasa. Jeśli jednak okaże się, że są one prawdziwe, uczona uważa, że opracowanie nadprzewodnika ze wzbogaconego azotem wodorku lutetu pracującego w temperaturze pokojowej lub opracowanie technologii nadprzewodzących pracujących przy umiarkowanym ciśnieniu powinno być stosunkowo proste.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z CeNT UW we współpracy z badaczami z Polski, Włoch i Chin jako pierwsi oszacowali temperaturę, w jakiej mogą pracować nadprzewodniki oparte o związki srebra i fluoru. Uzyskana wartość jest bliska 200 K (-73 °C), czyli znacząco więcej niż 135 K (-138 °C) dla dotychczasowych rekordzistów – związków miedzi i tlenu. O badaniach można przeczytać w czasopiśmie Physical Review Materials.
      Prof. Wojciech Grochala wraz ze swoją grupą badawczą z Centrum Nowych Technologii UW od lat zajmuje się nowymi kandydatami na związki przewodzące prąd elektryczny bez oporu, czyli tzw. nadprzewodniki. Najlepszym z kandydatów jest fluorek srebra(II) (AgF2).
      Jest on bardzo podobny do nadprzewodników opartych o tlenki miedzi, ale występują też pewne różnice, które uniemożliwiają otrzymanie stanu nadprzewodzącego – tłumaczy prof. Grochala.
      Jedną z tych różnic jest struktura atomowa – w nadprzewodnikach miedziowych występują płaskie warstwy tlenku miedzi, a powstające dzięki temu silne oddziaływania magnetyczne są uważane za kluczową cechę umożliwiającą nadprzewodnictwo.
      W strukturze fluorku srebra(II) warstwy srebra i fluoru są jednak pofałdowane, co znacznie zmniejsza siłę oddziaływań magnetycznych – wyjaśnia prof. Haibin Su z Hong Kongu, współpracujący z polskim zespołem.
      Badacze znaleźli jednak sposób by rozwiązać problem. W publikacji powstałej we współpracy naukowców z Polski, Włoch i Chin, wydanej na łamach czasopisma Amerykańskiego Towarzystwa Fizycznego „Physical Review Materials”, prezentują oni teoretyczny model, w którym otrzymanie płaskich warstw AgF2 jest możliwe poprzez osadzenie ich na stałym podłożu o określonym składzie i strukturze.
      Wybór odpowiedniego materiału jako podłoża „narzuca” osadzonemu na nim AgF2 płaską geometrię, co sprawia, że oddziaływania magnetyczne są dużo silniejsze, niż w krystalicznym AgF2 – wyjaśnia dr Adam Grzelak z CeNT UW, dodając: W nanotechnologii nazywamy to epitaksjalnym osadzaniem cienkich warstw.
      Szacujemy, że oddziaływania te będą niemal dwukrotnie silniejsze, niż w tlenkach miedzi, co z kolei ma szanse przełożyć się na półtorakrotnie wyższą temperaturę nadprzewodnictwa – mówi członek zespołu badawczego, prof. José Lorenzana z Włoch. Nakowiec zaznacza, że uzyskana wartość temperatury jest rekordowo wysoka, co umożliwiłoby stosowanie tanich chłodziw do zabezpieczenia działania nowych nadprzewodników.
      Następnym krokiem będzie weryfikacja tego modelu z użyciem istniejących technik eksperymentalnych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy połączyli ze sobą dwa niemagnetyczne izolatory i odkryli, że miejsce, w którym materiały się stykają zyskało właściwości magnetyczne oraz nadprzewodzące. Zwykle te dwa zjawiska nie występują jednocześnie.
      Dla Kathryn A. Moler ze Stanford Linear Accelerator Center, która prowadziła badania nad zobrazowaniem wspomnianego zjawiska, odkrycie to otwiera ekscytujące możliwości dla inżynierii nowych materiałów oraz badania współoddziaływań normalnie niekompatybilnych stanów materii.
      Moler mówi, że teraz naukowcy muszą dowiedzieć się, czy magnetyzm i nadprzewodnictwo jednak występują wspólnie w materiałach, a dotychczas tego nie zauważyliśmy czy też odkryto nowy niezwykły stan nadprzewodnictwa, które wchodzi w interakcje z magnetyzem. Nasze przyszłe badania pokażą, czy zjawiska te się znoszą czy się wspomagają - stwierdziła uczona.
      Teraz naukowcy rozpoczynają eksperymenty, które mają pokazać, co dzieje się z magnetyzmem i nadrzewodnictwem podczas ściskania użytych przez nich glinianu lantanu i tytanatu strontu lub też poddawaniu ich działaniu pola elektrycznego.
      To nie pierwsze zdumiewające zjawisko, które zachodzi po połączeniu tych dwóch tlenków. Niedawno informowaliśmy o niezwykle interesującym odkryciu dokonanym przez uczonych z MIT-u i Uniwersytetu w Augsburgu.
    • przez KopalniaWiedzy.pl
      Profesor Wuzong Zhou ze szkockiego Uniwersytetu św. Andrzeja odkrył, że podczas palenia świecy w każdej sekundzie w płomieniu powstaje ok. 1,5 mln nanocząstek diamentu.
      Świece wynaleziono ponad 2 tys. lat temu w starożytnych Chinach, trzeba było jednak współczesnego zakładu z kolegą po fachu, by rozszyfrować tajemnice związane z ich spalaniem. Kolega z innego uniwersytetu powiedział do mnie: "Nikt, oczywiście, nie wie, z czego tak naprawdę składa się płomień świecy". Odpowiedziałem mu, że nauka może ostatecznie wyjaśnić wszystko, dlatego postanowiłem spróbować.
      Podczas eksperymentów profesorowi asystował student Zixue Su. Dzięki technice próbkowania wynalezionej przez Zhou naukowcy byli w stanie pobrać cząstki z centralnej części płomienia. Dodajmy, że wcześniej nikomu się to jeszcze nie udało. Okazało się, że znajdowały się tam cztery odmiany alotropowe węgla: diament, grafit, węgiel amorficzny i fulereny (choć część naukowców podkreśla, że w przypadku tych ostatnich poprawnie za odmianę alotropową należy uznać kryształ fuleryt, który składa się z cząsteczek fulerenów). To spore zaskoczenie, ponieważ każda z form powstaje zazwyczaj w innych warunkach.
      W dolnej części płomienia występują węglowodory, które po drodze na szczyt ulegają w wyniku różnych reakcji przekształceniu w dwutlenek węgla. Co się jednak dokładnie dzieje w międzyczasie, chemicy nie wiedzieli. Zhou i Su ustalili, że w centrum płomienia znajdują się nanocząstki diamentów, fulereny, a także grafit i węgiel amorficzny.
      Akademicy z University of St Andrews uważają, że ich odkrycie może pozwolić opracować tańsze i bardziej przyjazne dla środowiska metody pozyskiwania diamentów, które jak wiadomo, są cennym materiałem przemysłowym. Niestety, cząstki diamentu są spalane i przekształcane w dwutlenek węgla, ale nasze ustalenia na zawsze zmienią sposób, w jaki postrzegamy płomień świecy.
    • przez KopalniaWiedzy.pl
      Wydawałoby się, że trudno o bardziej przewidywalny pierwiastek niż lit - najlżejszy metal, o licznie atomowej zaledwie 3. Tymczasem okazało się, że zachowanie litu bywa nieprzewidywalne i zależy od zjawisk kwantowych.
      W warunkach pokojowych lit przybiera formę kryształu o strukturze romboedru, przy wyższym ciśnieniu i temperaturze zmieniającą się w układ regularny (sześcienny) centrowany ściennie lub przestrzennie. Są to najprostsze struktury krystaliczne, nie spodziewano się więc żadnych niespodzianej przy innych warunkach, dopóki w ciągu ostatnich kilku lat nie zaobserwowano kilku zaskakujących anomalii, jak przejście z metalu do półprzewodnika w niskiej temperaturze, a poniżej 17 Kelwinów nawet nadprzewodnika.
      Uczeni z University of Edinburgh oraz Carnegie Institution of Washington doszli do wniosku, że dane na temat zachowania litu są niekompletne i poddali go testom w szerokim zakresie: aż do ciśnienia 1,3 Mbara i w zakresie temperatur od 77 do 300 Kelwinów. Wyniki okazały się bardzo ciekawe.
      Pierwszą niespodzianką była temperatura topnienia, który w większości materiałów rośnie wraz z ciśnieniem i nawet dla najlżejszych gazów: wodoru i helu wynosi 1000 Kelwinów przy ciśnieniu 0,5 Mbara, zaś lit przy takim ciśnieniu pozostaje w stanie ciekłym aż do zdumiewająco niskiej temperatury 190 K - to najniższa temperatura topnienia przy takim ciśnieniu, jaką zaobserwowano dla jakiegokolwiek materiału.
      Kolejne niespodzianki czekały przy podnoszeniu ciśnienia powyżej 0,6 Mbara. Tak ściskany lit zmienia swoją strukturę krystalograficzną na bardziej skomplikowaną, przyjmując postaci z 40, 88 i 24 atomami na pojedynczy element kryształu. Struktury złożone z 40 i 88 atomów nie mieściły się nawet w teoretycznych przewidywaniach.
      Wygląd wykresy zależności stanu litu od temperatury i ciśnienia, zwłaszcza zaś zaskakująco niska temperatura topnienia są wynikiem tego, że w jego zachowaniu przy wysokim ciśnieniu zaczynają przeważać efekty kwantowe.
      Eksperymenty przeprowadzano w laboratoriach U.S. Department of Energy Office of Science's Advanced Photon Source (APS) w Argonne, oraz w European Synchrotron Radiation Facility (ESRF) we francuskim Grenoble; wyniki badań opublikowano w Nature Physics.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...