Jump to content
Forum Kopalni Wiedzy
  • ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Content

    • By KopalniaWiedzy.pl
      Inżynierowie z University of Illinois pogodzili ekspertów, którzy nie mogli dotychczas dojść do porozumienia, co do właściwości grafenu odnośnie jego zginania. Dzięki połączeniu eksperymentów z modelowaniem komputerowym określili, ile energii potrzeba do zgięcia wielowarstwowego grafenu i stwierdzili, że wszyscy badacze, którzy uzyskiwali sprzeczne wyniki... mieli rację.
      Większość badań nad grafenem skupia się na zbudowaniu z niego przyszłych urządzeń elektronicznych. Jednak wiele technologii przyszłości, jak elastyczna elektronika, czy miniaturowe niewidoczne gołym okiem roboty, wymagają zrozumienia nie tylko właściwości elektrycznych, ale i mechanicznych grafenu. Musimy się dowiedzieć przede wszystkim, jak materiał ten rozciąga się i zgina.
      Sztywność materiału to jedna z jego podstawowych właściwości mechanicznych. Mimo tego, że badamy grafen od dwóch dekad, wciąż niewiele wiemy na temat tej jego właściwości. A dzieje się tak, gdyż badania różnych grup naukowych dawały wyniki, różniące sie od siebie o całe rzędy wielkości, mówi współautor najnowszych badań, Edmund Han.
      Naukowcy z Illinois odkryli, dlaczego autorzy wcześniejszych badań uzyskiwali tak sprzeczne wyniki. Zginali grafen albo w niewielkim albo w dużym stopniu. Odkryliśmy, że w sytuacjach tych grafen zachowuje się odmienne. Gdy tylko trochę zginasz wielowarstwowy grafen, to zachowuje się on jak sztywna płyta, jak kawałek drewna. Jeśli jednak zegniesz go mocno, zaczyna zachowywać się jak ryza papieru, poszczególne warstwy atomów ślizgają się po sobie, wyjaśnia Jaehyung Yu.
      Ekscytujące jest to, że mimo iż wszyscy uzyskiwali odmienne wyniki, to wszyscy mieli rację. Każda z grup mierzyła coś innego. Opracowaliśmy model, który wyjaśnia wszystkie różnice poprzez pokazanie, jak się one mają do siebie w zależności od kąta wygięcia grafenu, mówi profesor Arend van der Zande.
      Naukowcy stworzyli własne płachty wielowarstwowego grafenu i poddawali je badaniom oraz modelowaniu komputerowemu. W tej prostej strukturze istnieją dwa rodzaje sił zaangażowanych w zginanie grafenu. Adhezja, czyli przyciąganie atomów na powierzchni, próbuje ściągnąć materiał w dół. Im jest on sztywniejszy, tym większy opór stawia adhezji. Wszelkie informacje na temat sztywności materiału są zakodowane w kształcie, jaki przybiera on na poziomie atomowym podczas zginania, dodaje profesor Pinshane Huang. Naukowcy szczegółowo kontrolowali, w jaki sposób materiał się zgina i jak w tym czasie zmieniają się jego właściwości.
      Jako, że badaliśmy różne kąty wygięcia, mogliśmy zaobserwować przejście z jednego stanu, w drugi. Ze sztywnego w giętki, ze sztywnej płyty do zachowania ryzy papieru, stwierdza profesor Elif Ertekin, który był odpowiedzialny za modelowanie komputerowe. Najpierw stworzyliśmy modele komputerowe na poziomie atomowym. Wykazały one, że poszczególne warstwy będą ślizgały się po sobie. Gdy już to wiedzieliśmy, przeprowadziliśmy eksperymenty z wykorzystaniem mikroskopu elektronowego, by potwierdzić występowanie tego zjawiska". Okazuje się więc, że im bardziej grafen zostaje wygięty, tym bardziej elastyczny się staje.
      Badania te mają olbrzymie znaczenie np. dla stworzenia w przyszłości urządzeń, które będą na tyle małe i elastyczne, by mogły wchodzić w interakcje z komórkami czy materiałem biologicznym.
      Komórki mogą zmieniać kształt i reagować na sygnały ze środowiska. Jeśli chcemy stworzyć mikroroboty czy systemy o właściwościach systemów biologicznych, potrzebujemy elektroniki, która będzie w stanie zmieniać kształt i będzie bardzo miękka.  Możemy wykorzystać fakt, że poszczególne warstwy wielowarstwowego grafenu ślizgają się po sobie, dzięki czemu materiał ten jest o rzędy wielkości bardziej miękki niż standardowe materiały o tej samej grubości, wyjaśnia van der Zande.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po raz pierwszy w historii sąd federalny nakazał udostępnienie policji całej bazy danych DNA, w tym profili, których właściciele nie wyrazili zgody na udostępnienie.
      Od czasu, gdy w ubiegłym roku policja – po przeszukaniu publicznej bazy danych DNA – schwytała seryjnego mordercę sprzed dziesięcioleci, udało się dzięki takim bazom rozwiązać wiele nierozstrzygniętych spraw. Jednak działania policji budzą zastrzeżenia dotyczące prywatności. We wrześniu Departament Sprawiedliwości, by rozwiać te obawy, wydał instrukcję, zgodnie z którą policja może przeszukiwać tego typu bazy danych wyłącznie w sprawach o przestępstwa związane z użyciem przemocy oraz tam, gdzie właściciel profilu wyraził zgodę.  Już zresztą wcześniej, bo w maju witryna GEDmatch, na którą każdy może wgrać swój profil DNA, ograniczyła policji dostęp do tych profili, których właściciele wyrazili zgodę. Tym samym liczba profili DNA do których policja ma dostęp na GDAmatch spadła z 1,3 miliona do zaledwie 185 000.
      Pewien policyjny detektyw z Florydy prowadzi śledztwo w sprawie seryjnego gwałciciela. Uznał, że dostęp jedynie do 185 000 profili z GEDmatch to zbyt mało i wystąpił do sądu z wnioskiem, by ten, nakazał witrynie udostępnienie mu całej bazy. Detektyw ma nadzieję, że jacyś krewni gwałciciela wgrali tam informacje o swoim DNA, dzięki którym uda się znaleźć sprawcę. Sędzia przychylił się do prośby detektywa. Wyrok taki od razu wzbudził kontrowersje.
      Prawnicy mówią, że to, czy właściciele profili mają powody do zmartwień zależy od prowadzenia każdej ze spraw i trudno jest na tym etapie wyrokować, jak rozstrzygnięcie sądu ma się do amerykańskiego prawa. Zwracają jednak uwagę, że GEDmatch to niewielka firma. Mimo to posiadana przez nią baza 1,3 miliona profili oznacza, że w bazie tej znajduje się profil kuzyna trzeciego stopnia lub kogoś bliżej spokrewnionego z 60% białych Amerykanów.
      Firmy takie jak 23andMe czy Ancestry posiadają znacznie bardziej rozbudowane bazy, a zatem pozwalają na sprofilowanie znacznie większej liczby obywateli USA. Zresztą 23andMe już zapowiedziała, że jeśli otrzyma podobny wyrok to będzie się od niego odwoływała. Prawnicy zauważają, że z jednej strony, jeśli w przyszłości pojawi się takie odwołanie i rozpocznie się batalia sądowa, którą będzie rozstrzygał jeden z Federalnych Sądów Apelacyjnych lub Sąd Najwyższy, to ustanowiony zostanie silny precedens. Z drugiej strony osoba, która zostałaby oskarżona dzięki przeszukaniu takiej bazy mogłaby zapewne powoływać się na Czwartą Poprawkę, która zakazuje nielegalnych przeszukań.
      Specjaliści mówią, że jeśli podobne wnioski zaczną pojawiać się coraz częściej i sądy będą się do nich przychylały, to będzie to poważny problem dla witryn z bazami danych DNA.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy ze szwedzkiego Uniwersytetu Technologicznego Chalmers obalili teorię mówiącą, że obie nici DNA są utrzymywane przez wiązania atomów wodoru. Okazuje się, że kluczem są siły hydrofobowe, nie atomy wodoru. Odkrycie to może mieć duże znaczenie dla medycyny i innych nauk biologicznych.
      Helisa DNA składa się z dwóch nici zawierających molekuły cukru i grupy fosforanowe. Pomiędzy obiema nićmi znajdują się zasady azotowe zawierające atomy wodoru. Dotychczas sądzono, że to wiązania atomów wodoru utrzymują razem obie nici.
      Jednak uczeni z Chalmers wykazali właśnie, że kluczem do utrzymania razem nici jest hydrofobowe wnętrze molekuł zanurzonych w środowisku składającym się głównie z wody. Zatem mamy tutaj hydrofilowe otoczenie i hydrofobowe molekuły odpychające otaczającą je wodę. Gdy hydrofobowe molekuły znajdują się w hydrofilowym środowisku, grupują się razem, by zmniejszyć swoją ekspozycję na wodę.
      Z kolei wiązania wodorowe, które dotychczas postrzegano jako elementy utrzymujące w całości podwójną helisę DNA, wydają się mieć więcej wspólnego z sortowaniem par bazowych, zatem z łączniem się helisy w odpowiedniej kolejności.
      Komórki chcą chronić swoje DNA i nie chcą wystawiać ich na środowisko hydrofobowe, które może zawierać szkodliwe molekuły. Jednocześnie jednak DNA musi się otwierać, by było użyteczne. Sądzimy, że przez większość czasu komórki utrzymują DNA w środowisku wodny, ale gdy chcą coś z DNA zrobić, na przykład je odczytać, skopiować czy naprawić, wystawiają DNA na środowisko hydrofobowe, mówi Bobo Feng, jeden z autorów badań.
      Gdy na przykład dochodzi do reprodukcji, pary bazowe odłączają się i nić DNA się otwiera. Enzymy kopiują obie strony helisy, tworząc nową nić. Gdy dochodzi do naprawy uszkodzonego DNA, uszkodzone części są wystawiane na działanie hydrofobowego środowiska i zastępowane. Środowisko takie tworzone jest przez proteinę będącą katalizatorem zmiany. Zrozumienie tej proteiny może pomóc w opracowaniu wielu leków czy nawet w metodach leczenia nowotworów. U bakterii za naprawę DNA odpowiada proteina RecA. U ludzi z kolei proteina Rad51 naprawia zmutowane DNA, które może prowadzić do rozwoju nowotworu.
      Aby zrozumieć nowotwory, musimy zrozumieć, jak naprawiane jest DNA. Aby z kolei to zrozumieć, musimy zrozumieć samo DNA. Dotychczas go nie rozumieliśmy, gdyż sądziliśmy, że helisa jest utrzymywana przez wiązania atomów wodoru. Teraz wykazaliśmy, że chodzi tutaj o siły hydrofobowe. Wykazaliśmy też, że w środowisku hydrofobowym DNA zachowuje się zupełnie inaczej. To pomoże nam zrozumieć DNA i proces jego naprawy. Nigdy wcześniej nikt nie umieszczał DNA w środowisku hydrofobowym i go tam nie badał, zatem nie jest zaskakujące, że nikt tego wcześniej nie zauważył, dodaje Bobo Feng.
      Szwedzcy uczeni umieścili DNA w hydrofobowym (w znaczeniu bardzo zredukowanej koncentracji wody) roztworze poli(tlenku etylenu) i krok po kroku zmieniali hydrofilowe środowisko DNA w środowisko hydrofobowe. Chcieli w ten sposób sprawdzić, czy istnieje granica, poza którą DNA traci swoją strukturę. Okazało się, że helisa zaczęła się rozwijać na granicy środowiska hydrofilowego i hydrofobowego. Bliższa analiza wykazała, że gdy pary bazowe – wskutek oddziaływania czynników zewnętrznych – oddzielają się od siebie, wnika pomiędzy nie woda. Jako jednak, że wnętrze DNA powinno być suche, obie nici zaczynają przylegać do siebie, wypychając wodę. Problem ten nie istnieje w środowisku hydrofobowym, zatem tam pary bazowe pozostają oddzielone.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Wydziału Inżynierii Chemicznej i Procesowej Politechniki Warszawskiej wykorzystują tlenek grafenu i związki grafenopochodne do opracowania nowych materiałów zabezpieczających przed promieniowaniem podczerwonym. Projekt IR-GRAPH realizowali ze środków Narodowego Centrum Badań i Rozwoju.
      Chcemy, żeby nasze materiały stanowiły barierę zarówno przed wpuszczaniem, jak i wypuszczaniem ciepła – mówi kierująca pracami dr inż. Marta Mazurkiewicz-Pawlicka. To kompozyty. Tworzymy je na bazie polimerów, obecnie dwóch rodzajów. Jako napełniacz stosujemy materiały grafenowe z dodatkiem tlenków metali, np. tlenku tytanu.
      Takie połączenie gwarantuje skuteczne ekranowanie. Materiały grafenowe są dodawane w celu pochłonięcia promieniowania, a tlenki metali mają za zadanie je rozpraszać – wyjaśnia badaczka.
      Konkurencyjny materiał
      Na rynku są już dostępne np. folie na okna, które chronią przed promieniowaniem. Materiały opracowywane przez naukowców z Politechniki Warszawskiej mogą być jednak dla nich konkurencją. Żeby obniżyć temperaturę o kilka stopni Celsjusza, dodaje się tam około 5% napełniacza – tłumaczy dr Mazurkiewicz-Pawlicka. My podobne wyniki uzyskujemy przy dodaniu 0,1% napełniacza, czyli 50 razy mniej.
      Na razie zespół skupia się jednak na samych materiałach, a nie konkretnych aplikacjach. Choć nietrudno wskazać potencjalne zastosowania, takie jak właśnie okna, ale też elewacje, a nawet tkaniny. Zimą takie materiały chroniłyby przed utratą ciepła, a latem przed nadmiernym nagrzaniem.
      W przypadku budynków czy pojazdów mogłaby to być pewna alternatywa dla powszechnie dzisiaj stosowanej klimatyzacji. Jej używanie pochłania przecież mnóstwo energii. Im bardziej chcemy zmienić temperaturę w stosunku do tej naturalnej dla danego pomieszczenia, tym więcej energii potrzeba. Każde mniej energochłonne wsparcie oznaczałoby oszczędności w budżecie i korzyść dla środowiska.
      Patrząc w przyszłość
      Nasi naukowcy przeprowadzili badania krótkoterminowe. Ich wyniki są obiecujące, ale wiele kwestii wymaga jeszcze dokładniejszego sprawdzenia, m.in. zachowanie polimerów w promieniowaniu UV, podwyższonej temperaturze czy zmienionej wilgotności. Ważne jest przetestowanie dotychczasowych rozwiązań zarówno w różnych warunkach, jak i w dłuższym czasie. Badania takie można przeprowadzić przy użyciu komory klimatycznej, do której na kilka tygodni można wstawić próbkę materiału i ją obserwować.
      Na przykład żeby wykorzystać nasze materiały w folii na okna musimy popracować nad barwą, bo obecna, w odcieniach szarości, ogranicza widzialność – mówi dr Mazurkiewicz-Pawlicka. Chcemy też znaleźć nowe polimery, które mogłyby zostać użyte jako osnowa w naszych materiałach.
      Współpraca
      Zespół dr Mazurkiewicz-Pawlickiej tworzyli dr hab. Leszek Stobiński, dr Artur Małolepszy oraz grupa studentów wykonujących w ramach projektu prace inżynierskie i magisterskie. Swoją cegiełkę dołożyli też członkowie Koła Naukowego Inżynierii Chemicznej i Procesowej. Zrobili urządzenie, które mierzy efektywność naszych folii – opowiada dr Mazurkiewicz-Pawlicka. Składa się z lampy emitującej promieniowanie podczerwone i czujnika, który mierzy, o ile stopni udało się obniżyć temperaturę.
      W ramach IR-GRAPH naukowcy z PW ściśle współpracowali z Tatung University na Tajwanie. Korzystali także ze wsparcia Wydziału Fizyki Uniwersytetu Warszawskiego. Prof. Dariusz Wasik, Dziekan Wydziału i dr hab. Andrzej Witowski są specjalistami w fizyce ciała stałego i wykonali dla nas pomiary spektrometryczne – mówi dr Mazurkiewicz-Pawlicka.
      Dlaczego ekranować podczerwień?
      Grafen kojarzony jest przede wszystkim z zastosowaniami w elektronice i automatyce. Wykorzystanie go do ekranowania promieniowania nie jest jeszcze tak rozpowszechnione. Są doniesienia literaturowe, że grafen ekranuje promieniowanie elektromagnetyczne – opowiada dr Mazurkiewicz-Pawlicka. Jest to szeroko badane pod kątem promieniowania mikrofalowego, a ostatnio też terahercowego, głównie w zastosowaniach militarnych. Pomyśleliśmy, żeby sprawdzić właściwości grafenu dla promieniowania podczerwonego, bo na ten temat wiadomo niewiele.
      Promieniowanie podczerwone charakteryzuje się długością fal między 780 nanometrów a 1 milimetr. Wspólnie ze światłem widzialnym i promieniowaniem UV tworzy spektrum promieniowania słonecznego. W nadmiarze ma ono negatywny wpływ na naszą skórę. A aż około 50% tego promieniowania, które dociera do powierzchni Ziemi, stanowi właśnie podczerwień (odczuwana w postaci ciepła). Dlatego tak ważne jest jej ekranowanie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Grafen ma wiele zalet i jedną poważną wadę – brak pasma wzbronionego, przez co nie nadaje się do użycia w roli półprzewodnika. Możliwe jest jednak sztuczne wytworzenie pasma wzbronionego w grafenie poprzez dołączenie do niego atomów wodoru.
      Naukowcy z Göttingen i Pasadeny zarejestrowali właśnie jedną z najszybciej przebiegających reakcji chemicznych, jakie kiedykolwiek badano – niezwykły obraz atomów wodoru łączących się z grafenem.
      Uczeni bombardowali grafen atomami wodoru. Wodór zachowywał się nieco inaczej, niż się spodziewaliśmy, mówi Alec Wodtke z Wydziału Dynamiki Powierzchni Instytutu Chemii Biofizycznej im. Maksa Plancka i profesor Instytutu Chemii Fizycznej z Uniwersytetu w Göttingen. Zamiast natychmiast odlatywać od grafenu, atomy wodoru na chwilę przyklejały się do atomów węgla i dopiero później się od nich odbijały. Tworzyły czasowe wiązanie chemiczne, wyjaśnia. Naukowców zaintrygowało jeszcze jedno zjawisko. Otóż atomy wodoru miały dużą energię przed spotkaniem z grafenem. Gdy zaś go opuszczały ich energia była znacznie niższa. Jej większość traciły podczas zderzenia, lecz nie było jasne, co się z tą energią stało.
      Naukowcy z Göttingen i ich koledzy z Caltechu (California Institute of Technology), chcąc wyjaśnić zagadkę zaginionej energii, opracowali model teoretyczny, który przetestowali na komputerze, a uzyskane wyniki porównali z wynikami eksperymentów. Jako, że okazały się one zgodne, naukowcy mogli odtworzyć to, co w ciągu femtosekund zachodziło pomiędzy węglem a wodorem. To wiązanie chemiczne istnieje przez około 10 femtosekund. To jedna z najszybszych bezpośrednio zaobserwowanych reakcji chemicznych, mówi Alexander Kandratsenka z Göttingen.
      W ciągu tych 10 femtosekund atom wodoru przekazuje niemal całą swoją energię atomowi węgla w grafenie. Prowadzi do do powstania fali dźwiękowej, która rozprzestrzenia się na zewnątrz od miejsca, w którym atomy się zetknęły. Przypomina to propagację fali powstającej po wrzuceniu kamienia do wody, wyjaśnia uczony. To między innymi dzięki tej fali dźwiękowej atom wodoru łatwiej niż przypuszczano łączy się z atomem węgla.
      Uzyskane wyniki mogą mieć fundamentalne znaczenie dla przemysłu i możliwości wykorzystania grafenu w roli półprzewodnika. Jednak same eksperymenty wymagały olbrzymiej wiedzy, zasobów i odpowiedniego sprzętu. Musieliśmy prowadzić je w warunkach próżni niemal doskonałej, by utrzymać grafen w czystości, mówią badacze. Ponadto samo odpowiednie przygotowanie atomów wodoru wymagało wykorzystania olbrzymiej liczby systemu laserowych.

      « powrót do artykułu
×
×
  • Create New...