Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Pszczoły kojarzą nam się z ulami bądź zwisającymi z gałęzi rojami, tymczasem naukowcy opisali ostatnio gatunek pszczoły, który buduje gniazda ze sklejonych ze sobą płatków kwiatów. Całość przypomina kokon i jest naprawdę kolorowa. Wewnątrz znajduje się pojedyncze jajo, osłaniane najprawdopodobniej w ten sposób do momentu wyklucia postaci dorosłej – imago.

Wykorzystywanie fragmentów roślin do budowy gniazda nie jest powszechne wśród pszczół – opowiada dr Jerome Rozen z Amerykańskiego Muzeum Historii Naturalnej. Jego część międzynarodowego zespołu badała ciekawie wyglądające gniazda Osmia (Ozbekosima) avoseta w Turcji. Inna 3-osobowa podgrupa naukowców analizowała kwiatowe wytwory tego samego gatunku w Iranie. Ich wspólny artykuł ukazał się w piśmie American Museum Novitates. Sam gatunek pszczoły został odkryty pod koniec lat osiemdziesiątych w dwóch wybranych do najnowszego studium lokalizacjach, ale dopiero teraz udało się zebrać fakty istotne dla jego biologii.

Gatunek reprezentuje ok. 20 tys. osobników. Naukowcom bardzo zależało na poznaniu ich zwyczajów, w końcu pszczoły są głównymi zapylaczami i zapewniają przetrwanie wielu ekosystemów. Obserwacje wykazały, że samica buduje jedno gniazdo przez dzień lub dwa. W sumie powstaje ich ok. 10, często są zlokalizowane obok siebie. Na początku owad odgryza płatki od kwiatu, a potem transportuje je do wygrzebanej w ziemi jamki, która ma wielkość orzecha ziemnego. Potem przychodzi czas na mocowanie konstrukcji. Samica formuje kokon, umieszczając na sobie kolejne płatki. Od czasu do czasu upewnia się, że wszystko będzie się trzymać razem, stosując klej z nektaru. Po wybudowaniu kolorowej tuby wzmacnia ją od wewnątrz gliną, na którą nakłada jeszcze jedną warstwę płatków. W ten sposób powstaje coś w rodzaju kanapki: pomiędzy dwiema warstwami materiału roślinnego znajduje się spoidło z błota.

Choć na zdjęciach wydają się duże, kwiatowe osłonki mierzą zaledwie 1,3 cm. Nic więc dziwnego, że w środku mieści się tylko jedno jajeczko. Matka zapewnia rozwijającemu się potomstwu pokarm. Na dnie kokonu umieszcza zapas nektaru i pyłku. Jajo składa na samej górze. Analiza pozostałości pyłku z odnóży wykazała, że owady z Turcji odwiedzały wyłącznie kwiaty sparcety siewnej (Onobrychis viciifolia), a irańskie spokrewnionego z nią Hedysarum elymaiticum. Oznacza to, że gatunek wąsko się wyspecjalizował i związał swoje losy z plemieniem Hedysareae z rodziny bobowatych.

Samica zapieczętowuje tubę. Najpierw zagina wewnętrzne płatki, potem dodaje gliny, a na odchodnym zapieczętowuje zewnętrzne płatki. Choć trudno w to uwierzyć, tak przygotowana kapsuła jest niemal hermetyczna, co stanowi doskonałe zabezpieczenie przed wszystkim, co można sobie wyobrazić. Po zaledwie 3-4 dniach z jaja wylęga się larwa. Gdy zje nektar, obraca stwardniałą osłonę. Dr Rozen nie wie, czy zwierzę spędza zimę jako larwa, czy już jako dorosły osobnik.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Kwiaty mogą przyjmować różne kształty, wielkości i kolory. Wiemy też o setkach gatunków, których kwiaty zmieniają kolor. Najczęściej robią to prawdopodobnie po to, by zasygnalizować zapylaczom, że mogą dostarczyć im nektar. Wszystkie te zmiany są jednokierunkowe. Kwiat, który raz zmienił kolor, nie wraca do poprzedniego. Łatwo więc wyobrazić sobie zdumienie profesora Hirokazu Tsukaya, który zauważył, że kolor kwiatów badanej przez niego od dziesięcioleci rośliny wielokrotnie zmieniał się, wracając do poprzedniej barwy.
      Uczony bada winorośl z gatunku Causonis japonica. Mimo, że studiowałem tę roślinę szczegółowo i już w 2000 roku odkryłem, że istnieją co najmniej 2 odmiany tego gatunku, dwukierunkowa zmiana koloru była dla mnie całkowitym zaskoczeniem, mówi uczony. Mój kolega, profesor Nobumitsu Kawakubo z Gifu University jest ekspertem w tworzeniu filmów poklatkowych kwitnących roślin. Wraz ze studentami obserwowali zachowanie różnych Causonis japonica, spodziewając się zauważyć, że kwiat zmienia kolor ze zwyczajowego pomarańczowego na jasny różowy. Gdy przejrzeli film nie mogli uwierzyć, że roślina nie tylko stała się z różowej z powrotem pomarańczowa, ale wielokrotnie zmieniała kolor. Poinformowali mnie o tym i rozpoczęliśmy wspólne badania, dodaje.
      Szczegółowe badania wykazały, że kolor pomarańczowy kwiatu związany jest z męskim cyklem rozwoju, gdy wydziela nektar. Gdy pręcik, męski organ płciowy w kwiecie, starzeje się i odpada, kwiat zmienia kolor na różowy. Kilka godzin później zaczyna dojrzewać słupek, żeński organ płciowy, wydziela nektar i kwiat znowu staje się pomarańczowy. Gdy i ten cykl się kończy, znowu zmienia kolor na różowy. Głównym związkiem chemicznym odpowiedzialnym za zmianę koloru jest karotenoid. Tempo jego akumulacji i degradacji jest tutaj najszybsze z dotychczas obserwowany. To kolejne zdumiewające okrycie, stwierdza Tsukaya.
      Teraz japońscy naukowcy chcą zbadać, jak działa mechanizm dwukierunkowej zmiany koloru, na jakim poziomie regulowany jest cykl, czy odpowiadają za niego proteiny czy też regulacja odbywa się na poziomie genetycznym. Kilkaset lat temu japońscy rolnicy nienawidzili tej rośliny, gdyż mocno się rozplenia. Z kolei nowelista Kyoka Izumi był nią zachwycony. Zastanawiam się, czy jego opinia nie pomogła w ochronie tego gatunku. Niezależnie od wszystkiego, cieszę się, że gatunek przetrwał i dzieli się z nami swymi tajemnicami. Ciekaw jestem, co jeszcze odkryjemy, podsumowuje uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Spadek różnorodności roślin i zanik niektórych gatunków przyczynia się do wymierania owadów zapylających. Larwy pszczół, także dziko żyjących, muszą spożywać potas, sód i cynk, żeby przeżyć i zdrowo się rozwijać – wykazały badania nad funkcjonowaniem pszczoły - murarki ogrodowej.
      Naukowcy z Uniwersytetu Jagiellońskiego udowodnili, że wiele zapylaczy, w tym pszczoły, nie ma dostępu do zbilansowanej diety, koniecznej dla ich przetrwania. Środowiska, w których żyją pszczoły, są zmieniane przez człowieka. Spada zarówno ilość jak i jakość odżywcza dostępnego pyłku, który powinien zawierać składniki kluczowe dla zdrowia i życia pszczół. Niedobór potasu, sodu i cynku w pyłku kwiatowym sprawia, że owady częściej umierają, nie zawsze potrafią wytworzyć kokon i osiągają mniejsze rozmiary ciała jako dorosłe osobniki.
      W badaniach skupiono się na gatunku dzikiej pszczoły – murarce ogrodowej. W przeciwieństwie do swoich społecznych kuzynów, jak trzmiele i pszczoła miodna, należy ona do pszczół samotnych. Nie żyje w ulach, nie tworzy rodzin, nie produkuje miodu, nie posiada robotnic usługujących królowej i nie wychowuje wspólnie potomstwa. Samice murarki składają jaja na zebranej wcześniej mieszance nektaru i pyłku, zmagazynowanej w komórce gniazdowej i zamurowanej błotem. Z jaj wykluwają się larwy, które żywią się zgromadzonym pyłkiem, przepoczwarzają i hibernują w postaci dorosłej w kokonach niemal rok, aby wiosną znowu zapewnić nowe pokolenie.
      Zespół z UJ karmił larwy murarek różnymi rodzajami pyłku: albo o zbilansowanej, pełnej zawartości mikroelementów, albo pyłku zawierającego za mało sodu, potasu lub cynku, po czym badał wpływ diety na cechy historii życiowych pszczół: śmiertelność, masę ciała i wykształcenie prawidłowego kokonu.
      Okazało się, że niedobór potasu wywoływał podobny efekt u obu płci: zwiększał śmiertelność, redukował masę ciała dorosłych i powodował niedorozwój kokonów. Dodatek soli potasowej do diety ubogiej w ten pierwiastek polepszał przeżywalność i poprawiał jakość kokonów, ale nie udało się już uzyskać prawidłowej masy okazów dorosłych.
      Niedostatek sodu wyraźnie zwiększał śmiertelność murarek obu płci. Dodanie chlorku sodu nie skutkowało zwiększoną przeżywalnością, ale u samic powodowało zwiększoną masę.
      Z kolei zawartość cynku w pyłku kwiatowym najsilniej wpływała na samce. Pokarm o obniżonym stężeniu cynku skutkował ich większą śmiertelnością oraz mniejszą masą.
      W kolejnym badaniu analizowano tzw. budżet pierwiastkowy murarki ogrodowej. Dla atomów dwunastu najważniejszych pierwiastków badacze wyliczyli proporcję ich asymilacji z pokarmu do ciała, alokację w struktury ciała i w kokon, i wreszcie proporcję w jakiej są wydalane.
      Zrozumienie tych zależności jest ważne, ponieważ pozwala naukowcom poznać znaczenie odpowiednio zbilansowanej diety dla funkcjonowania dzikich pszczół i pozwala na przewidywanie jak zdrowe będą pszczoły zasiedlające różne środowiska – oceniają dr Michał Filipiak i Zuzanna Filipiak, autorzy publikacji podsumowującej wyniki badań.
      Ich zdaniem całościowe spojrzenie na zdrowie pszczół może ujawnić niedostrzegalne wcześniej zależności między roślinami i owadami, kształtujące funkcjonowanie całego łańcucha pokarmowego. Wiedzę o tym, że bilansowanie diety i dostęp do odpowiednich gatunków pyłku kształtuje populacje pszczół, można wykorzystać w działaniach na rzecz ochrony i poprawy bazy pokarmowej pszczół.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Argentyńscy naukowcy znaleźli doskonale zachowane skamieniałości kokonów owadów, co pozwoliło im ustalić, że osy stanowiły część łańcucha pokarmowego gnijących jaj dinozaurów (Paleontology).
      W 1989 r. w Patagonii odkryto jaja tytanozaurów sprzed ok. 70 mln lat. Ostatnio okazało się, że w jednym z pękniętych jaj występują kiełbaskokształtne twory o długości 2-3 cm i centymetrowej średnicy. Wyglądają jak skamieniałe kokony owadów i najbardziej przypominają rozmiarami i wyglądem kokony współczesnych os. Choć naukowcy dysponują wieloma przykładami sfosylizowanych jaj dinozaurów i kilkoma skamieniałymi kokonami, po raz pierwszy kokony były ściśle powiązane z jajami. Osy stanowiły prawdopodobnie część łańcucha pokarmowego, składającego się głównie z padlinożernych owadów, które rozwijały się w gnijących jajach – podkreśla dr Jorge Genise z Museo Argentino de Ciencias Naturales.
      Wygląda na to, że w wyniku działania siły opisywane jajo popękało, co pozwoliło padlinożercom dobrać się do jego zawartości. Jako że jajo miało ok. 20 cm długości, nie można było narzekać na brak żółtka. W dalszej kolejności przybywały pająki, które żywiły się pierwszymi zjawiającymi się na miejscu padlinożercami (owadami). Osy znajdowały się na szczycie piramidy pokarmowej i prawdopodobnie zjadały inne owady i/lub pająki.
      Paleontolodzy uważają, że niektóre duże gady odwiedzały rokrocznie to samo miejsce, by złożyć tam jaja. Padlinożercy musieli więc oczyścić gniazdo przed pojawieniem się nowego miotu.
      W sumie Argentyńczycy odkryli 8 skamieniałych kokonów datowanych na kredę. Specjaliści sądzą, że kokony znaleziono w miejscu ich powstania, ponieważ delikatne ścianki miały specyficzną teksturę powierzchniową, skład ich zawartości był podobny do składu ciasta skalnego, poza tym kokony były rozmieszczone klastrowato tylko w jednym jaju z 5-jajowego lęgu.
    • By KopalniaWiedzy.pl
      Otoczka powietrzna, dzięki której pająk topik (Argyroneta aquatica) spędza większość życia pod wodą, działa jak skrzela, ekstrahując z wody rozpuszczony tlen i rozpraszając dwutlenek węgla.
      Naukowcy doszli do tego, mierząc stężenie tlenu wewnątrz i poza siecią. Dysponując takim dzwonem nurkowym, topik może zostawać pod wodą przez całą zimę, a w innych porach roku, oszczędzając siły, przez ponad dobę, podczas gdy inne oddychające powietrzem atmosferycznym owady muszą się wynurzać co kilka minut.
      Wcześniej sądzono, że topiki wytrzymują pod wodą od 20 do 40 min, jednak najnowsze badania prof. Rogera Seymoura z Uniwersytetu w Adelajdzie i doktora Stefana Hetza z Uniwersytetu Humboldtów wykazały, że sprawy mają się zgoła inaczej.
      A. aquatica tworzy pomiędzy liśćmi podwodnych roślin kokon w kształcie otwartego od dołu globusa. Później pająk napełnia go pojedynczym bąblem powietrza. Wg Seymoura, przeważnie ma on wielkość paznokcia palca serdecznego. Naukowcy dodają jednak, że samice robią bańki pokaźniejszych rozmiarów, które można dalej powiększać w razie potrzeby, np. by pomieścić ofiarę lub jaja. Dodatkowo pająki powiększają bąble, gdy poziom tlenu w wodzie spada.
      Bańka powietrza w rzeczywistości wystaje pomiędzy oczkami sieci, powstaje więc rodzaj interfejsu powietrze-woda. Podczas eksperymentów naukowcy posłużyli się tlenoczułym światłowodem. Dzięki temu mogli ocenić objętość gazu w dzwonie nurkowym oraz poziom wymiany gazowej między wodą a bańką. Dodatkowo zmierzono zużycie tlenu przez owada. Odkryliśmy, że w porównaniu do tego, co było na początku, z wody może pochodzić aż 8-krotnie więcej tlenu. Bańka działa więc jak bardzo skuteczne skrzela fizyczne, czyli dyfuzyjne. Jako że topik prowadzi raczej osiadły tryb życia, bąbel odpowiada jego potrzebom oddechowym nawet w rozgrzanej stojącej wodzie.
      Raz na dobę topik musi donieść świeżego powietrza, ponieważ bańka kurczy się wskutek dyfundowania azotu do otaczającej wody. Transport odbywa się na odwłoku i tylnych nogach. Dzięki temu, że pająk tak rzadko się wynurza i siedzi spokojnie, łatwiej mu polować, poza tym sam unika stania się czyjąś ofiarą. Seymour uważa, że być może ze względów kamuflujących topik przygotowuje swoją sieć nocą.
    • By KopalniaWiedzy.pl
      Z wiekiem pogarsza się pamięć nie tylko ludzi i innych ssaków, ale i pszczół. Naukowcy doszli do takiego wniosku, badając wpływ starzenia na zdolność do odnajdowania drogi do ula (PLoS ONE).
      Chociaż zwykle pszczoły są znane ze swych doskonałych umiejętności nawigacyjnych – umieją przecież wrócić z naprawdę dalekich wędrówek, w dodatku odbywanych w złożonych topograficznie okolicach – starzenie powoduje, że po przeprowadzce nie dochodzi u nich do wygaszenia wspomnień lokalizacji dawnych siedzib kolonii.
      Z wcześniejszych studiów wiemy, że podczas testów laboratoryjnych stare pszczoły słabo się uczą nowych zapachów kwiatów. Z tego powodu chcieliśmy sprawdzić, czy starzenie wpływa też na zachowania istotne dla przeżycia pszczół w naturze – opowiada prof. Gro Amdam z Uniwersytetu Stanowego Arizony (ASU).
      Testując zdolności adaptacyjne, naukowcy z ASU i Universitetet for miljø-og biovitenskap przyzwyczajali owady do nowego ula, podczas gdy stary zamykano. Grupy składały się z dorosłych i starych pszczół. Dano im kilka dni na wyuczenie się nowej lokalizacji domu i wygaszenie niepotrzebnych już danych odnośnie do starego. Następnie akademicy zdemontowali nowy ul i zmusili grupy pszczół do wybierania między 3 lokalizacjami; jedną z nich był ich stary dom. Stare owady preferencyjnie kierowały się w stronę starego ula, mimo że bazując na zdobytym właśnie doświadczeniu, powinny odrzucić tę opcję.
      Chociaż wiele starych pszczół nie radziło sobie z uczeniem, odkryliśmy, że parę nadal wypadało doskonale – podkreśla Daniel Münch z Universitetet for miljø-og biovitenskap.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...