Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Zespół naukowców z Francji, Niemiec i USA opracował nowy sposób na nieulotne przechowywanie danych. Metodę nazwali magnetyczną pamięcią wirową kontrolowaną częstotliwością.

Uczeni użyli nanokropek wykorzystujących właściwości wirów magnetycznych i ich zdolności do przechowywania danych binarnych. Dane można kontrolować za pomocą prostej zmiany częstotliwości wirów.

Co prawda już wcześniej próbowano używać magnetycznych nanoobiektów do przechowywania informacji, jednak nikt nie opracował metody zmiany kierunku magnetyzacji w pojedynczym nanoobiekcie. Teraz udało się to osiągnąć dzięki połączeniu impulsów mikrofalowych ze statycznym polem magnetycznym.

Zespół naukowców skojarzył wiry o różnych częstotliwościach (dużej i małej) z - odpowiednio - pozytywną i negatywną polaryzacją. Przy pozytywnej polaryzacji, rdzeń wiru jest ułożony równolegle do pola magnetycznego. Przy negatywnej - jest przeciwrównoległy. Za pomocą niezwykle czułego rezonansowego mikroskopu sił magnetycznych (MRFM) specjaliści byli w stanie kontrolować polaryzację poszczególnych nanokropek.

Stworzony przez nich prototypowy układ pamięci składa się z macierzy nanokropek oraz elektromagnesu generującego stałe pole magnetyczne prostopadłe do macierzy. Za pomocą końcówki MRFM można badać i kontrolować stan poszczególnych nanokropek. Do jego odczytania należy użyć mikrofalowego pola magnetycznego na tyle słabego, by nie zmieniło polaryzacji nanokropek. Zwiększając jego moc można zmieniać polaryzację, a zatem odczytywać dane. Badacze przeprowadzili setki prób zapisu i wszystkie przebiegły bezbłędnie oraz nie miały wpływu na stan sąsiadujących nanokropek.

Eksperci chcą teraz udoskonalić swój wynalazek m.in. poprzez wyeliminowanie konieczności używania MRFM, który zawiera ruchome części. Planują zastąpić go lokalnymi czujnikami odczytującymi stan nanokropek. Myślą też o układaniu nanokropek jedna na drugiej i stworzeniu w ten sposób układów składających się z wielu rejestrów.

Wstępne badania pokazują, że nowa pamięć może działać znacznie szybciej i oferować większą pojemność niż obecnie wykorzystywane nieulotne układy RAM.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

I pomyśleć, jak wyglądały pamięci komputerów na początku…

Poniżej pamięć ferrytowa. Dwanaście bajtów pamięci.

Ręczna robota…

 

2852716499_5e4beb67ef.jpg

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

dzwnych pomysłów było już dużo, pamięci optyczne, holograficzne... co z tego trafi pod strzechy ? i kiedy ?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

pamięć ferrytowa. Dwanaście bajtów pamięci.

Ręczna robota…

 

wyglada jak pismo węzełkowe kipu Indian Ameryki Pd. :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Metodę nazwali <strong>magnetyczną pamięcią wirową kontrolowaną częstotliwością</strong>.

 

Dlaczego nazwali tę metodę po polsku? :-)

 

PS. Dawajcie linki do źródeł! Ale konkretne, a nie do całego portalu!

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Elpida poinformowała o wyprodukowaniu pierwszego własnego prototypu pamięci ReRAM. Kość wykonano w technologii 50 nanometrów, a jej pojemność wynosi 64 megabity.
      ReRAM (Resistance Random Access Memory) to pamięć nieulotna zbudowana z materiałów, które zmieniają oporność w odpowiedzi na zmiany napięcia elektrycznego. Największą zaletą ReRAM jest niezwykle szybka praca przy bardzo niskim napięciu. Ma ona obie zalety pamięci DRAM, czyli szybką pracę, oraz pamięci flash, czyli możliwość przechowywania danych po odłączeniu zasilania. Czas zapisu danych na ReRAM wynosi około 10 nanosekund, czym dorównuje układom DRAM, jest za to znacznie bardziej wytrzymała niż flash, gdyż umożliwia dokonanie ponad miliona cykli zapisu/odczytu danych. Przed kilkoma miesiącami informowaliśmy o stworzeniu przez Samsunga prototypowej komórki ReRAM, wytrzymującej bilion cykli zapis/odczyt.
      Elpida ma nadzieję, że pierwsze przeznaczone do sprzedaży kości ReRAM rozpocznie produkować już w przyszłym roku. Mają być one wykonane w technologii 30 nm, a ich pojemność ma być liczona w gigabitach. ReRAM może stać się konkurentem powszechnie wykorzystywanych układów flash, szczególnie na rynku urządzeń przenośnych, gdzie duże znaczenie ma ilość energii potrzebnej do obsługi pamięci.
    • przez KopalniaWiedzy.pl
      Czemu tak nie lubimy drapania paznokciem po tablicy czy odgłosu łamania styropianu? Odpowiedzi należy szukać w częstotliwości dźwięków i budowie ludzkiego ucha.
      Choć zapewne nie było to proste, naukowcom udało się zebrać grupę 104 ochotników, którzy zgodzili się wysłuchać różnych nieprzyjemnych dźwięków. Części z nich (24) mierzono w tym czasie tętno, ciśnienie krwi oraz reakcję skórno-galwaniczną.
      Christoph Reuter z Instytutu Muzykologii Uniwersytetu Wiedeńskiego i Michael Oehler z Macromedia Hochschule für Medien und Kommunikation poprosili badanych, by określili dyskomfort odczuwany przy każdym dźwięku.
      Eksperyment przeprowadzano na dźwiękach z szerokiego spektrum częstotliwości. Analiza ujawniła, że wolontariusze reagowali najsilniej na dźwięki z zakresu 2000-4000 herców. Niemiecko-austriacki duet nie był tym szczególnie zaskoczony, ponieważ wcześniejsze studia pokazały, że ludzie reagują silniej na składowe odgłosu drapania paznokciem tablicy o średniej, a nie wyższej częstotliwości. Wkład Reutera i Oehlera polegał na sprecyzowaniu granic przedziału najsilniej zaznaczonej odpowiedzi.
      Naukowcy zastosowali ciekawy wybieg - podawali badanym różniące się informacje odnośnie do źródła dźwięków. Jednych przekonywano, że dźwięk stanowi część kompozycji muzycznej, a innym mówiono prawdę, że to skrobanie tablicy. Sądząc, że słyszą fragment utworu, ludzie uznawali dźwięk za mniej nieprzyjemny, ale oszukać dawał się tylko umysł, a nie ciało, bo reakcje fizjologiczne były takie same jak w podgrupie znającej faktyczny stan rzeczy.
      Niekiedy akustycy usuwali z nagrania niektóre składowe, np. piskliwe drapanie, ale nie ograniczało to w znaczący sposób nieprzyjemnych wrażeń. Nadal pozostawały bowiem dźwięki z zakresu 2000-4000 herców, czyli odpowiadające częstotliwości ludzkiego głosu. W tym podobieństwie panowie upatrują zresztą źródła problemu. Kanał słuchowy naszego ucha jest ponoć tak zbudowany, że wzmacnia dźwięki o takiej charakterystyce, wzmacnia więc też te niepożądane...
    • przez KopalniaWiedzy.pl
      Ćmy rolnice tasiemki (Noctua pronuba) są tak wyczulone na ultradźwięki polujących nietoperzy, że neurony w ich uchu reagują na ruch błony bębenkowej odpowiadający wielkości atomu. Biolodzy z Uniwersytetu w Bristolu tłumaczą, że gdyby błonę bębenkową przeskalować, by miała grubość ściany z cegieł, owad byłby w stanie wykryć przemieszczenie ścianki na grubość włosa.
      Brytyjczycy tłumaczą, że u motyli występuje narząd tympanalny, który stanowi rodzaj rezonatora pokrytego cienką błoną bębenkową. Znajdują się na niej skolopofory, zbudowane z trzech komórek - jednej nerwowej i dwóch okrywających. Podobnie jak w naszym uchu wewnętrznym, drgania są przekształcane w impulsy elektryczne. Wibracje można opisać za pomocą częstotliwości (jak szybko błona się porusza) oraz natężenia (jak bardzo się przemieszcza). Dotąd nie wiedziano jednak, które z właściwości dźwięku są przekładane na sygnał nerwowy.
      Zespół dr Hannah ter Hofstede spróbował więc jednocześnie monitorować aktywność neuronów ćmy i drgania błony bębenkowej w czasie podawania dźwięków o różnych częstotliwościach i natężeniu. Brytyjczycy zauważyli, że do pobudzenia komórek nerwowych wystarczyło przemieszczenie błony rzędu 140 pikometrów, co odpowiada wielkości niektórych atomów.
      Gdyby neurony po prostu wykrywały dźwięki, to drobne przesunięcie byłoby takie samo dla wszystkich częstotliwości, różniłaby się tylko prędkość wibracji. [W świetle uzyskanych wyników wygląda jednak na to], że neurony słuchowe są aktywowane przez niewielkie przemieszczenia błony bębenkowej, a nie częstotliwość jej drgań - tłumaczy dr Holger Goerlitz. Pewnym wyjątkiem są niskie dźwięki o częstotliwości poniżej 15 kHz, w przypadku których do pobudzenia neuronów dochodziło przy większych przemieszczeniach błony bębenkowej. Ćmy są głuche na niskie, nieszkodliwe dźwięki z tła [muszą być naprawdę głośne, by je odnotowały], co umożliwia im dokładniejsze dostrojenie do ważniejszych odgłosów: ultradźwięków wydawanych przez polujące na nie drapieżniki - podsumowuje dr Hannah ter Hofstede.
    • przez KopalniaWiedzy.pl
      Na Purdue University powstaje nowy rodzaj układów pamięci, które mają być szybsze od obecnie istniejących rozwiązań, a jednocześnie zużywać znacznie mniej energii niż kości flash. Pamięci łączą krzemowe nanokable z polimerem „ferroelektrycznym", który zmienia polaryzację pod wpływem pola elektrycznego.
      Nowa technologia jest dopiero w powijakach, przyznaje doktorant Saptarshi Das, który pracuje pod kierunkiem profesora Joerga Appenzellera. Nazwano ją FeTRAM (ferroelectric transistor random access memory) - pamięć o swobodnym dostępie z tranzystorem ferroelektrycznym.
      FeTRAM to pamięć nieulotna, a więc jej zawartość nie zostaje utracona po odłączeniu zasilania. Układy FeTRAM mogą zużywać nawet 100-krotnie mniej energii niż kości flash. Jednak, jak zauważa Das, obecnie zużywają więcej niż teoretyczne minimum, gdyż znajdują się w początkowych fazach rozwoju.
      FeTRAM spełnia wszystkie wymagania stawiane przed nośnikami pamięci. Pozwala na wielokrotny zapis i odczyt, zużywa mało energii, umożliwia upakowanie dużej ilości kości na małej przestrzeni i jest kompatybilna z technologią CMOS, co oznacza, że wdrożenie jej do produkcji nie powinno nastręczać większych trudności.
      FeTRAM jest podobna do wykorzystywanej komercyjnie na niewielką skalę technologii FeRAM. Obie używają materiałów ferroelektrycznych, jednak w FeRAM zastosowano ferroelektryczne kondensatory, co powoduje, że odczyt zapisanych danych wiąże się z ich usunięciem z układu pamięci. W przypadku FeTRAM, dzięki tranzystorom, te same dane można odczytywać wielokrotnie.
    • przez KopalniaWiedzy.pl
      Kaski motocyklowe chronią głowę i mózg przed urazami, ale, niestety, mogą prowadzić do utraty słuchu.
      Naukowcy z University of Bath i Bath Spa University przeprowadzili testy w tunelu aerodynamicznym. Stwierdzili, że wbrew obiegowej opinii, źródłem największego hałasu wcale nie jest silnik, ale powietrze przepływające wokół kasku. Nie trzeba przekraczać dozwolonych prędkości, by natężenie dźwięku przestało być bezpieczne.
      Podczas eksperymentu kaski wkładano na głowy manekinów. W różnych miejscach kasku, a także w uchu manekina montowano mikrofony. Okazało się, że źródłem znaczącego hałasu, który docierał aż do błony bębenkowej, była dolna część kasku, a także pasek pod brodą.
      Brytyjczycy sprawdzali również, jak na głośność wpływają kształt kasku (kąty ustawienia i wycięcia poszczególnych elementów) oraz prędkość wiatru.
      Czasowe przesunięcie progu słyszenia (ang. temporary threshold shift, TTS) zmienia się jako funkcja charakterystyki spektralnej hałasu. Naukowcy z Bath podkreślają jednak, że przed ich badaniami TTS mierzono i przewidywano w sposób nieuwzględniający zmienności częstotliwości. Z tego powodu w czasie jednego z eksperymentów poddali oni ochotników audiometrii tonalnej (ang. pure tone audiometry), w ramach której określano najsłabszy słyszany przez nich dźwięk. Badanie przeprowadzano przed i po ekspozycji na biały szum. Jako że wcześniej zespół Nigela Holta ustalił, że kask motocyklowy działa jak filtr spektralny, wytłumiając dźwięki o częstotliwości powyżej 500 Hz i wzmacniając dźwięki o częstotliwości poniżej 500 Hz, testy przeprowadzano w i bez kasku motocyklowego. Okazało się, że wzorzec czasowego przesunięcia progu słyszenia stanowi funkcję filtrujących cech hełmu. Wystąpił np. wzrost wrażliwości na wysokie dźwięki i większy niż oczekiwano spadek wrażliwości na niskie dźwięki wzmacniane przez kask. Akademicy z Bath zaprezentowali wyniki swoich studiów na 161. konferencji Amerykańskiego Stowarzyszenia Akustycznego, która odbywała się od 23 do 27 maja w Seattle.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...