Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Dziwnie smakująca planeta

Rekomendowane odpowiedzi

Nasza wiedza o wszechświecie się poszerza, dzięki nowym technologiom możemy zajrzeć dalej. Od niedawna dopiero udaje się obserwować planety o rozmiarze zbliżonym do Ziemi, a już dostajemy nowe zagadki. Teleskop Spitzera odnalazł ziemiopodobną planetę z atmosferą zaledwie 33 lata świetlne od nas. Problem w tym, że nie wygląda ona tak, jak według dotychczasowych teorii powinna. Według określeń samych astronomów, nie „smakuje" jak myśleliśmy, bo... nie zawiera metanu.

Odkryta planeta, wielkości naszego Neptuna, otrzymała nazwę GJ 436b. Obiega ona niewielką, chłodną gwiazdę w konstelacji Lwa, rok na niej trwa niecałe trzy nasze dni. To najmniejsza dotąd odkryta planeta „posmakowana" teleskopem, więc zrozumiała jest radość astronomów: oznacza to, że przy użyciu większego teleskopu niż Spitzer będzie można badać jeszcze mniejsze planety i analizować ich skład chemiczny. Radość zamieniła się jednak w zmieszanie, kiedy okazało się, że nowy glob nie pasuje do teorii, wg której jego atmosfera powinna zawierać duże ilości metanu.

Dlaczego astronomowie spodziewają się właśnie metanu? Metan w ziemskiej atmosferze powszechnie wytwarzany jest przez organizmy żywe, począwszy od bakterii, aż po ssaki. Jednak metan na nowo odkrytej planetce oczekiwany był dlatego, że tak podpowiada znana nam chemia. Większość znanych planet i innych obiektów, wliczając również „brązowe karły", czyli nieudane gwiazdy, zawiera duże ilości metanu. Metan znajdowany jest w każdym obiekcie o temperaturze nie większej niż tysiąc Kelvinów (około 730° Celsjusza). Tak przynajmniej było do tej pory.

Atmosfera GJ 436b powinna zawierać w większości metan oraz niewielkie ilości tlenku węgla. To po prostu typowe związki węgla, jakie się normalnie tworzą w takich temperaturach. Analiza spektrum światła pokazała obecność tlenku węgla, ale ani śladu metanu! Teoretycy otrzymali w ten sposób nielichą zagadkę. Dotychczasowe teorie trzeba będzie niestety tworzyć na nowo. Na razie bezradnie drapiemy się po głowach - przyznają badacze. - Ale mamy przynajmniej świadomość, że nasze teoretyczne modele planet wymagają zdecydowanych poprawek. Zaczynamy jednak wreszcie dostawać rzeczywiste dane z odległych obiektów, to pozwoli nam zrozumieć, co się dzieje z ich atmosferami.

GJ 436b odkryto analizując sposób, w jaki zakłóca ona docierające do nas światło swojej gwiazdy. Przy każdym obiegu raz planeta przechodzi przed tarczą słoneczną, raz się za nią chowa. Pozwala to określić jej rozmiary i skład chemiczny. Do tej pory w ten sposób odkrywano jedynie planety olbrzymy, o rozmiarach podobnych do naszego Jowisza. Udoskonalenie tej techniki pozwoli teraz na odkrywanie planet podobnych do Ziemi, na których może znajdować się życie. Dlatego zrozumienie, jak ewoluuje skład atmosfery i jak powstają i utrzymują się składniki pozwalające rozwijać się życiu - woda, tlen, węgiel - są takie ważne. Spitzer jest już nienowym teleskopem, który zakończył swoją podstawową misję, kiedy w 2009 roku skończyły mu się zapasy substancji chłodzącej aparaturę. Od tego czasu używany jest jedynie do rejestrowania obiektów w podczerwieni - w ten właśnie sposób odkrył on tę zaskakującą planetę.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Kalifornijskiego w Riverside (UC Riverside) dokonali niespodziewanego odkrycia. Silny gaz cieplarniany, metan, nie tylko ogrzewa Ziemię, ale i... ją ochładza. Nowo odkrytego zjawiska nie uwzględniono jeszcze w modelach klimatycznych.
      Gazy cieplarniane tworzą w atmosferze Ziemi warstwę przypominającą koc, która blokuje promieniowanie długofalowe, przez co utrudnia wypromieniowywanie ciepła przez planetę ogrzewaną przez Słońce. To prowadzi do wzrostu temperatury na powierzchni. Naukowcy z UC Riverside zauważyli niedawno, że znajdujący się w atmosferze metan absorbuje krótkofalowe promieniowanie ze Słońca. To powinno ogrzewać planetę. Jednak – wbrew intuicji – absorpcja promieniowania krótkofalowego prowadzi do takich zmian w chmurach, które mają niewielki efekt chłodzący, mówi profesor Robert Allen. Na podstawie przygotowanego modelu komputerowego naukowcy obliczyli, że dzięki temu efektowi chłodzącemu metan kompensuje ok. 30% swojego wpływu ocieplającego.
      Z tym zjawiskiem wiąże się też drugi, niespodziewany, mechanizm. Metan zwiększa ilość opadów, ale jeśli weźmiemy pod uwagę jego efekt chłodzący, to ten wzrost opadów powodowany przez metan jest o 60% mniejszy, niż bez efektu chłodzącego.
      Oba rodzaje energii, długofalowa z Ziemi i krótkofalowa ze Słońca, uciekają z atmosfery w większej ilości niż są do niej dostarczane. Atmosfera potrzebuje więc mechanizmu kompensującego ten niedobór. A kompensuje go ciepłem uzyskiwanym z kondensującej się pary wodny. Ta kondensacja objawia się w opadach. Opady to źródło ciepła, dzięki któremu atmosfera utrzymuje równowagę energetyczną, mówi Ryan Kramer z NASA. Jednak metan zmienia to równanie. Zatrzymuje on w atmosferze energię ze Słońca, przez co atmosfera nie musi pozyskiwać jej z opadów. Ponadto absorbując część energii metan zmniejsza jej ilość, jaka dociera do powierzchni Ziemi. To zaś zmniejsza parowanie. A zmniejszenie parowania prowadzi do zmniejszenia opadów.
      Odkrycie to ma znaczenie dla lepszego zrozumienia wpływu metanu i być może innych gazów cieplarnianych na klimat. Absorpcja promieniowania krótkofalowego łagodzi ocieplenie i zmniejsza opady, ale ich nie eliminuje, dodaje Allen.
      W ostatnich latach naukowcy zaczęli bardziej interesować się wpływem metanu na klimat. Emisja tego gazu rośnie, a głównymi jego antropogenicznymi źródłami są rolnictwo, przemysł i wysypiska odpadów. Istnieje obawa, że w miarę roztapiania się wiecznej zmarzliny, uwolnią się z niej olbrzymie ilości metanu. Potrafimy dokładnie mierzyć stężenie gazów cieplarnianych w atmosferze. Musimy jak najlepiej rozumieć, co te wartości oznaczają. Badania takie jak te prowadzą nas do tego celu, mówi Ryan Kramer.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy czekają na uruchomienie Vera C. Rubin Observatory, obserwatorium astronomicznego, którego budowa dobiega końca w Chile. Na jego potrzeby powstał najpotężniejszy aparat fotograficzny na świecie. Obserwatorium ma co trzy tygodnie wykonywać fotografie całego nieboskłonu. Jego główny program badawczy – Legacy Survey of Space and Time – zakłada utworzenie mapy Drogi Mlecznej, dokonanie spisu obiektów w Układzie Słonecznym czy zbadanie niewyjaśnionych sygnałów dobiegających z głębi wszechświata. Jednak obserwatorium może nigdy nie spełnić pokładanych w nim nadziei.

      Niedawno opublikowane raporty przygotowane przez zespół obserwatorium, a także amerykańskie Government Accountability Office – odpowiednik polskiej NIK – rysują przyszłość astronomii w ciemnych barwach. Konstelacje sztucznych satelitów, których panele słoneczne i anteny odbijają światło, mogą praktycznie uniemożliwić naziemne badania astronomiczne w świetle widzialnym. Niemożliwe mogą stać się badania kolizji czarnych dziur czy obserwacje asteroid bliskich Ziemi. Specjaliści ostrzegają, że mamy ostatnią możliwość, by temu zapobiec.
      Obecnie na orbicie okołoziemskiej znajduje się ponad 5400 satelitów. Większość z nich, umieszczona na niskich orbitach, okrąża Ziemię w ciągu około 1,5 godziny. Od czasu, gdy w 2019 roku firma SpaceX wystrzeliła swoją pierwszą grupę pojazdów i rozpoczęła budowę konstelacji Starlink, liczba sztucznych satelitów szybko rośnie, a będzie rosła jeszcze szybciej, gdyż dołączają kolejne przedsiębiorstwa. Z danych amerykańskiej Federalnej Komisji Komunikacji oraz Międzynarodowej Unii Telekomunikacji wynika, że tylko do tych dwóch organizacji wpłynęły wnioski o zezwolenie na wystrzelenie w najbliższych latach 431 713 satelitów, które będą tworzyły 16 konstelacji.
      Jeśli nad naszymi głowami będzie krążyło 400 000 satelitów, to będą one widoczne na każdym zdjęciu wykonanym w ramach badań astronomicznych. I nawet jeśli udałoby się automatycznie usunąć je z fotografii, to przy okazji utracona zostanie olbrzymia liczba informacji. Wyeliminowanie takich satelitów z obrazów będzie jednak bardzo trudne, między innymi dlatego, że będą się one poruszały w różny sposób i w różny sposób wyglądały w zależności od stosowanych filtrów kolorów. Eksperci, którzy pracują nad systemem wysyłającym automatyczne alerty do społeczności astronomów, gdyby Vera C. Rubin Observatory odkryło coś nowego – np. supernową – na nieboskłonie, obliczają, że konstelacje satelitów mogą doprowadzić do pojawienia się... 10 milionów fałszywych alertów na dobę. To pokazuje, jak ważne jest usuwania satelitów ze zdjęć. Nie wiadomo jednak, czy uda się uniknąć wszystkich takich fałszywych alertów, jak wiele informacji zostanie przy okazji utraconych i ile interesujących obiektów pozostanie przez to niezauważonych.
      Konstelacje sztucznych satelitów mogą też znacznie utrudnić obserwację asteroid bliskich Ziemi. Dotychczas było wiadomo, że najlepszym momentem do ich wyszukiwania jest zmierzch. Jednak o zmierzchu panele słoneczne satelitów będą dobrze oświetlone, zaburzając możliwość obserwacji.
      Problem narasta. We wrześniu ubiegłego roku firma AST SpaceMobile wystrzeliła swojego prototypowego satelitę o nazwie BlueWalker3. Gdy dwa miesiące później rozwinął on anteny o powierzchni ponad 64 metrów kwadratowych, stał się jednym z najjaśniejszych obiektów na niebie. Jaśniejszym niż 99% gwiazd widocznych gołym okiem. A to dopiero początek. AST SpaceMobile chce w najbliższych latach wystrzelić 168 jeszcze większych satelitów.
      Obok pytania o wpływ konstelacji satelitów na badania naukowe rodzi się też pytanie o kwestie kulturowe czy filozoficzne. Czy kilka wielkich koncernów ma prawo kontrolować to, co ludzie widzą na nocnym niebie. Czy niebo, które przez wieki wpływało na literaturę, malarstwo, filozofię może zostać de facto sprywatyzowane przez kilka przedsiębiorstw liczących na kolosalne zyski. Istnieje bowiem poważne niebezpieczeństwo, że już za kilka lat, chcąc spojrzeć w rozgwieżdżone niebo, zobaczymy na nim więcej odbijających światło słoneczne sztucznych satelitów niż gwiazd. I nie będzie miało znaczenia, w którym miejscu Ziemi będziemy mieszkali.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zmiany klimatu niosą ze sobą wiele różnych zagrożeń. Jedną są bardziej oczywiste, inne mniej. Do kategorii tych drugich należą z pewnością zagrożenia dla... badań astronomicznych. Naukowcy z Uniwersytetu w Bernie, Politechniki Federalnej w Zurichu, Europejskiego Obserwatorium Południowego oraz Uniwersytetu w Reading przeprowadzili analizy wpływu zmian klimatycznych na badania prowadzone przez osiem najważniejszych naziemnych teleskopów. Wynika z nich, że musimy spodziewać się pogorszenia warunków do badań, a co za tym idzie, skrócenia czasu obserwacyjnego dla jednych z najcenniejszych instrumentów badawczych dostępnych nauce.
      Miejsca, w których zostaną wybudowane teleskopy przyszłej generacji są wybierane na dekady zanim urządzenia te rozpoczną swoje obserwacje. Później teleskopy takie pracują przez około 30 lat. Jest zatem niezwykle ważne, by móc określić, z wyprzedzeniem wynoszącym wiele dekad, móc określić, jak będą zmieniały się warunki w miejscu planowanej budowy. Tymczasem obecnie wyboru miejsc dokonuje się na podstawie pomiarów zbyt krótkich, by mogły one dać odpowiedź na pytanie o długookresowe zmiany klimatu.
      Jakość naziemnych obserwacji astronomicznych w dużej mierze zależy od klimatu. Supernowoczesne potężne teleskopy zwykle umieszcza się na dużych wysokościach, by skorzystać z dobrej przejrzystości atmosfery oraz szuka się miejsc o niskiej temperaturze i niskiej zawartości pary wodnej.
      Astrofizyk Caroline Haslebacher z Uniwersytetu w Bernie i jej koledzy zwracają uwagę, że zwykle przy wyszukiwaniu takiego miejsca bierze się pod uwagę ostatnich 5 lat. To zbyt mało. Uczeni postanowili więc zmierzyć się z tym problemem i przeprowadzili analizę, która miała na celu sprawdzić, jak w miejscach, w których znajdują się najważniejsze obecnie teleskopy – na Hawajach, w Chile, na Wyspach Kanaryjskich, w Australii, RPA i Meksyku – będzie zmieniał się klimat. Okazało się, że do roku 2050 wszędzie tam dojdzie do zwiększenia temperatury, wilgotności właściwej oraz zawartości wody opadowej w atmosferze.
      Czynniki te zmniejszą jakość obserwacji i prawdopodobnie doprowadzą do mniej intensywnego wykorzystania urządzeń z powodu złych warunków obserwacyjnych. Na przykład zwiększenie temperatury i wilgotności właściwej może zwiększyć kondensację pary wodnej na urządzeniach oraz będzie miało negatywny wpływ na systemy chłodzenia wewnątrz kopuł teleskopów. Z kolei zwiększenie zawartości wody opadowej będzie wiązało się z większą absorpcją światła, szczególnie podczerwonego, przez atmosferę, a więc mniej światła będzie docierało do teleskopów.
      Problemy szczególnie dotkną obserwatoriów projektowanych z myślą o pracy w szczególnych warunkach. Na przykład Paranal Observatory w Chile może pracować, gdy temperatura powietrza przy powierzchni nie przekracza 16 stopni Celsjusza, a Teleskop Williama Herschela na Wyspach Kanaryjskich nie może pracować, jeśli temperatura jego lustra wynosi 2 stopnie Celsjusza lub mniej powyżej punktu rosy.
      Przeprowadzona analiza nie wykazała za to zmian wilgotności względnej, pokrywy chmur czy turbulencji atmosferycznych. Autorzy badań zastrzegają jednak, że turbulencje jest szczególnie trudno przewidzieć, a w związku ze zmianami temperatury i prądów powietrznych należy się ich spodziewać.
      Antropogeniczne zmiany klimatu powinny być brane pod uwagę przy wybieraniu miejsc budowy teleskopów przyszłej generacji, podsumowuje Haslebacher.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gwiazdy mogą przechwytywać masywne planety wielkości Jowisza, wynika z modelu stworzonego przez naukowców z University of Sheffield. Mechanizm kradzieży wyjaśnia, skąd na orbitach gwiazd typu OB wzięły się odkryte w ubiegłym roku planety nazwane Bestiami (BEAST). Zgodnie bowiem z obecnie obowiązującymi teoriami, takie planety nie powinny istnieć.
      We wszechświecie istnieje wiele niezwykłych układów planetarnych. Z jednej strony mamy układy takie jak TRAPPIST-1, gdzie kilka niewielkich skalistych planet upakowanych jest na ciasnych orbitach wokół gwiazdy, z drugiej zaś znamy planety wielkości Jowisza, które krążą na orbitach odległych o setki jednostek astronomicznych od gwiazd. Wyjaśnienie formowania się takich układów planetarnych to poważne wyzwanie dla astronomii.
      W 2021 roku podczas projektu badawczego o nazwie B-star Exoplanet Abundance Study (BEAST) zauważono dwie planety wielkości Jowisza obiegające gwiazdy typu OB. Do tego typu należą gorące gwiazdy o masie co najmniej 2,4 razy większej od masy Słońca. Obecnie obowiązujące teorie mówią, że promieniowanie z gwiazd OB jest tak intensywne, że odparowują one otaczający je dysk akrecyjny, co uniemożliwia formowanie się planet. Tymczasem, jak wspomnieliśmy, znaleziono dwie planety wokół takich gwiazd. A jakby tego było mało jedna z nich znajduje się gigantycznej odległości 556 jednostek astronomicznych od gwiazdy. Do ponad 10-krotnie więcej niż odległość pomiędzy Plutonem a Słońcem.
      Richard Parker i Emma Daffern-Powell z University of Sheffield postanowili sprawdzić, skąd gwiazdy OB mogą mieć planety. Stworzyli model komputerowy, który miał zbadać hipotezę mówiącą, że gwiazdy OB rodzą się w miejscach dość dużego zagęszczenia gwiazd, a następnie bardzo szybko się stamtąd oddalają.
      Model wykazał, że w takim scenariuszu do przechwycenia planety przez gwiazdę OB może dochodzić 1 raz na 10 milionów lat. Ponadto, biorąc pod uwagę kształty i rozmiary orbit Bestii, gwiazdy OB z większym prawdopodobieństwem przejmą planety swobodne – takie, które zostały wyrzucone z orbity wokół gwiazdy macierzystej – niż planety znajdujące się na orbitach.
      Wykonane w Sheffield analizy wspierają więc hipotezę, że planety znajdujące na na orbitach odległych o ponad 100 j.a. nie krążą wokół gwiazd macierzystych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W odległości około 420 lat świetlnych od Ziemi znajduje się jedna z najmłodszych znanych nam planet. 2M0437b została odkryta przez międzynarodowy zespół astronomów pracujący pod kierunkiem specjalistów z University of Hawai'i. Ta jedna z niewielu znanych nam młodych planet pozwoli na lepsze zrozumienie procesu formowania się i ewolucji planet.
      Naukowcy oceniają, że 2M0437b jest kilkukrotnie bardziej masywna od Jowisza i powstała wraz ze swoją gwiazdą przed kilkunastoma milionami lat, gdy na Ziemi z oceanu wyłaniały się pierwsze z głównych wysp Hawajów. Dlatego też naukowcy uważają, że planeta jest wciąż gorąca od energii pochodzącej z jej okresu tworzenia się, a temperatura jej powierzchni jest podobna do temperatury lawy.
      Planetę jako pierwszy zauważył w 2018 roku Teruyuki Hirano, wykładowca wizytujący Uniwersytet Hawajski. Odkrył ją za pomocą teleskopu Subaru i od tamtej pory jest ona badana z wykorzystaniem innych hawajskich teleskopów.
      Autorzy najnowszych badań, Eric Gaidos i jego zespół, wykorzystali Keck Observatory by potwierdzić, że 2M0437b rzeczywiście towarzyszy gwieździe 2M0437, a nie jest jakimś bardziej odległym obiektem. Badania zajęły im aż trzy lata. Trwało to tak długo, ponieważ gwiazda bardzo powoli przesuwa się na nieboskłonie.
      Gwiazda i jej planeta znajdują się w Obłoku Molekularnym w Byku. To jeden z najbliższych Ziemi regionów formowania się gwiazd. To szczególnie ciemny obłok, pozbawiony masywnych gwiazd. W ubiegłym roku dowiedzieliśmy się Obłok Molekularny w Byku wchodzi w skład fali Radcliff'a, monolitycznej struktury zbudowanej z połączonych obszarów gwiazdotwórczych. Fala ma długość około 9000 i szerokość około 400 lat świetlnych. Co interesujące, Słońce miało już z nią do czynienia. Nasza gwiazda przeszła przez falę Radliffe'a przed 13 milionami lat. Za kolejnych 13 milionów lat znowu się z nią spotka.
      Badania Gaidosa i jego zespołu pokazały, że 2M0437b znajduje się obecnie w odległości aż 100 j.a. od swojej gwiazdy. Jednostka astronomiczna to średnia odległość pomiędzy Ziemią a Słońcem. Aby dokonać tego odkrycia potrzebowaliśmy dwóch z największych teleskopów na świecie, optyki adaptatywnej oraz czystego nieba nad Mauna Kea, mówi współautor badań, Michael Liu. Czekamy na kolejne odkrycia i możliwość bardziej szczegółowych badań takich planet za pomocą technologii przyszłości.
      Nowych informacji powinien dostarczyć Teleskop Kosmiczny Jamesa Webba, którego wystrzelenie zaplanowano na 18 grudnia bieżącego roku. Powinien on pozwolić na określenie składu atmosfery 2M0437b i sprawdzenie, czy posiada ona dysk, w którym formuje się księżyc.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...