Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Można odwrócić skutki autyzmu?

Recommended Posts

Amerykańscy naukowcy opracowali metodę diagnozowania autyzmu na podstawie próbek krwi. Stwierdzili również, że efekty tego zaburzenia mogą być w większym stopniu odwracalne niż dotąd sądzono. Wystarczy zastosować leki oddziałujące na metylację pewnych genów.

Metylacja polega na odwracalnym przyłączeniu grup metylowych (-CH3) do określonych miejsc w genomie. Terapie polegające na zmianie wzorców takiego oznakowania stosuje się już w leczeniu różnych nowotworów.

Jako że u poszczególnych osób autyzm może się manifestować pod postacią różnego zestawu objawów, dlatego na początku należy zidentyfikować specyficzne deficyty, ponieważ dopiero to pozwala zaprojektować i wdrożyć odpowiednią terapię. Przykładem spersonalizowanego podejścia medycznego może być wytypowany przez nas gen RORA – to jeden ze specyficznie zmienionych genów w podgrupie autyków z deficytami językowymi – opowiada dr Valerie W. Hu z Centrum Medycznego Uniwersytetu George'a Waszyngtona w Waszyngtonie.

W ramach eksperymentu zespół Hu identyfikował chemiczne zmiany w DNA pobranym z komórek bliźniąt jednojajowych i "zwykłego" rodzeństwa. W parach tych tylko u jednej osoby zdiagnozowano autyzm. Następnie porównywano geny z różnym wzorcem metylacji z listą genów, w przypadku których u badanych stwierdzono odmienne poziomy ekspresji. Koniec końców akademicy sprawdzali, jaka ilość białka powstaje w móżdżku i korze płata czołowego wskutek aktywności dwóch genów, które pojawiały się na obu listach. Okazało się, że przewidywania na postawie wzmożonej metylacji (metylacja pozwala na minimalizację aktywności genu) pokrywały się z tym, co działo się w mózgu osób z autyzmem – ilość obu białek była mniejsza niż w grupie kontrolnej. Oznacza to, że gdyby zablokować znakowanie wskazanych genów grupami metylowymi, prawdopodobnie udałoby się wyeliminować objawy autyzmu. Co ważne, można by diagnozować zaburzenie, nie pobierając próbek mózgu, lecz krew lub inną łatwo dostępną tkankę.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Szwajcarscy naukowcy opracowali metodę, za pomocą której można z zegarmistrzowską precyzją dostarczać leki (np. psychiatryczne czy przeciwnowotworowe) do wybranych miejsc w mózgu. Pozwala to uniknąć skutków ubocznych i pozwolić, by lek działał dokładnie tam, gdzie jest potrzebny.
      Nowa metoda, stworzona przez zespół z Politechniki Federalnej w Zurychu, jest nieinwazyjna. Precyzyjne dostarczanie leku jest kontrolowane z zewnątrz, za pomocą ultradźwięków. Wyniki ekipy prof. Mehmeta Fatiha Yanika opublikowano na łamach pisma Nature Communications.
      By dostarczać leki z milimetrową precyzją, Szwajcarzy zastosowali stabilne liposomy z lekiem, które sprzężono z wypełnionymi gazem wrażliwymi na ultradźwięki mikrobąbelkami. W ten sposób uzyskano kontrolowane ultradźwiękami nośniki leków (ang. Ultrasound-Controlled drug carriers; UC-carriers). Do tego opracowano sekwencję agregacji-uwalniania (ang. Aggregation and Uncaging Focused Ultrasound Sequence, AU-FUS).
      Zogniskowane ultradźwięki są już wykorzystywane w onkologii, by niszczyć nowotwór w precyzyjnie zdefiniowanych miejscach. W szwajcarskiej metodzie pracuje się jednak z dużo niższym poziomem energii, by nie uszkodzić tkanek.
      Zawierające drobnocząsteczkowe związki nośniki-UC są wstrzykiwane. Mogą to być, na przykład, zatwierdzone do użytku leki neurologiczne bądź neuropsychiatryczne, które pozostaną w krwiobiegu, dopóki będą enkapsulowane. Następnie wykorzystuje się 2-etapowy proces. W pierwszym etapie stosuje się falę ultradźwiękową o niskiej energii, by nośniki leków zgromadziły się w pożądanym miejscu w mózgu. Zasadniczo wykorzystujemy pulsy ultradźwięków, by wokół wybranego miejsca stworzyć wirtualną klatkę [...]. Gdy krew krąży, przepłukuje nośniki leku przez cały mózg. Ten, który trafi do klatki, nie może się z niej jednak wydostać - wyjaśnia Yanik.
      W drugim etapie stosuje się wyższą energię ultradźwiękową, by wprawić nośniki w drgania. Siła ścinająca niszczy lipidową membranę, uwalniając lek. Koniec końców lek pokonuje nietkniętą barierę krew-mózg w wybranym regionie i dociera do swojego celu molekularnego.
      W ramach testów akademicy zademonstrowali skuteczność metody na szczurach. Za jej pomocą zablokowali pewną sieć neuronalną, łączącą 2 regiony mózgu. Walidowaliśmy naszą metodę, nieinwazyjnie modulując rozprzestrzenianie aktywności neuronalnej w dobrze zdefiniowanym mikroobwodzie korowym (w szlaku czuciowo-ruchowym wibryssów). Manipulowaliśmy tym obwodem, ogniskowo hamując korę czuciową wibryssów za pomocą [...] muscymolu, który jest selektywnym agonistą receptora GABA-A.
      Ponieważ nasza metoda agreguje leki w miejscu, gdzie powinny zadziałać, można obniżyć dawkę. W eksperymentach na szczurach ilość leku była, na przykład, 1300-krotnie niższa od typowej dawki.
      Inne grupy badawcze wykorzystywały już zogniskowane ultradźwięki do dostarczania leków do konkretnych obszarów mózgu. Ich metody nie obejmowały jednak pułapek i miejscowego koncentrowania leków. Zamiast tego bazowano na lokalnym niszczeniu komórek naczyń krwionośnych; miało to zwiększyć transport leku z naczyń do tkanki nerwowej. W naszej metodzie fizjologiczna bariera między krwiobiegiem a tkanką nerwową pozostaje nienaruszona.
      Obecnie naukowcy oceniają skuteczność nowej metody na zwierzęcych modelach choroby psychicznej czy zaburzeń neurologicznych. Badają ją także pod kątem nieoperowalnych guzów mózgu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Instytutu Chemii Fizycznej Polskiej Akademii Nauk (IChF PAN) we współpracy z Wydziałem Chemicznym Politechniki Warszawskiej opracowali nową, bezrozpuszczalnikową metodę enkapsulacji cząsteczek leków w materiałach porowatych typu MOF (ang. Metal-Organic Framework).
      W obecnych czasach przemysł farmaceutyczny kładzie duży nacisk na poszukiwanie nowych form nośników leków, które usprawniłyby ich precyzyjność i pozwoliły kontrolować czas uwalniania. Ze względu na dużą powierzchnię właściwą i możliwość dostosowania kształtu, wielkości i funkcjonalności porów, bardzo obiecującą klasą materiałów, które mogą stanowić platformę do przenoszenia leku w organizmie, są organiczno-nieorganiczne hybrydowe materiały typu MOF. Stosowane obecnie metody wypełniania porów materiałów MOF cząsteczkami leku polegają na nasączaniu uprzednio zsyntezowanego i aktywowanego materiału MOF w odpowiednio przygotowanych roztworach leków. Ta z pozoru prosta czynność jest czasochłonna i obejmuje pojedyncze operacje: syntezę i aktywację materiału MOF, nasączanie, przemywanie i suszenie. Otrzymane w ten sposób materiały mają mniejszą pojemność niż obecnie stosowane nośniki leków - mezoporowate krzemionki czy nośniki organiczne.
      Od wielu lat mój Zespół prowadzi intensywne badania nad projektowaniem i syntezą molekularnych prekursorów oraz ich kontrolowaną transformacją do hybrydowych materiałów funkcjonalnych. Realizujemy to strategią typu "bottom-up", wykorzystując zarówno klasyczne metody rozpuszczalnikowe, jak i przyjazne środowisku metody mechanochemiczne - mówi prof. Janusz Lewiński.
      Naukowcy z IChF PAN we współpracy z kolegami z Wydziału Chemicznego PW opracowali nową, prostą i bezrozpuszczalnikową metodę enkapsulacji leków w materiałach typu MOF, w której zastosowany kompleks metalu działa zarówno jako prekursor leku, jak i element budulcowy materiału MOF. Według naukowców, wykorzystanie tej metody pozwoliło w sposób znaczący usprawnić enkapsulację cząsteczek leku w materiałach typu MOF oraz otworzyć drogę do otrzymywania wielu innych kompozytów typu "lek@MOF".
      To jest szybka i prosta procedura, w której reakcja mechanochemiczna bez użycia rozpuszczalnika pozwala na otrzymanie kompozytu "lek@MOF" nawet w 20 min - mówi dr Daniel Prochowicz, współautor pracy.
      Synteza mechanochemiczna jest bardzo prosta. Do przeprowadzenia reakcji potrzebujemy stałych prekursorów i elektrycznego młyna. Podczas mielenia substratów siła mechaniczna robi za nas całą robotę - mówi Jan Nawrocki, doktorant w grupie prof. Lewińskiego oraz pierwszy autor publikacji.
      Naukowcy podkreślają, że opracowana przez nich metoda z użyciem miedziowego klastera ibuprofenowego jest dopiero początkiem badań nad bardziej biokompatybilnymi materiałami, opartymi między innymi na cyrkonie i żelazie.
      Droga, która pozwoli na wykorzystanie materiałów typu MOF w przemyśle farmaceutycznym, jest zapewne długa i kręta, jednak jeśli zostaną one wprowadzone na rynek, to nasza metoda, ze względu  na swoją prostotę wytwarzania, będzie bardzo korzystna z ekonomicznego  punktu widzenia - mówi Prochowicz.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      By zapobiec fałszowaniu leków, tabletkom czy kapsułkom nadaje się unikatowe kształty i kolory. Stosowane są też różne oznaczenia czy charakterystyczne opakowania. Nie na wiele się to jednak zdaje, bo zgodnie z oszacowaniami, sfałszowane leki stanowią co najmniej 10% globalnego rynku farmaceutycznego. Powodują one znaczne straty na rynku farmaceutycznym, a niekiedy zagrażają zdrowiu i życiu pacjentów.
      Naukowcy z Purdue University wpadli na pomysł, by jako zabezpieczenie wdrożyć jadalne fizycznie nieklonowalne funkcje PUF (ang. Physical Unclonable Function), które dotąd znaliśmy z zastosowań elektroniczno-informatycznych.
      Jadalne PUF zespołu Younga Kima są cienkimi filmami. Ponieważ są w 100% białkowe, można je spożywać jako część tabletki bądź kapsułki.
      PUF cechuje zdolność generowania innej odpowiedzi przy każdej stymulacji, przez co są one nieprzewidywalne i skrajnie trudne do duplikowania. Jak tłumaczą autorzy artykułu z pisma Nature Communications, nawet producent nie mógłby stworzyć drugiego identycznego znacznika PUF.
      Oświetlanie znacznika LED-ami generuje odpowiedzi, które są używane do wyekstrahowania klucza bezpieczeństwa. Źródłem entropii są losowo rozmieszczone fluorescencyjne mikrocząstki jedwabiu.
      Naukowcy wykorzystali 4 białka fluorescencyjne (eCFP, eGFP, eYFP i mKate2), które mają specyficzne szczyty wzbudzenia i emisji w paśmie światła widzialnego. Amerykanie posłużyli się jedwabiem z ekspresją białek fluorescencyjnych, produkowanym przez transgeniczne jedwabniki. Później sporządzano wodny roztwór fluorescencyjnej fibroiny, przeprowadzano liofilizację i delikatne rozdrabnianie do mikrocząstek o kształcie zeolitu (miały one rozmiar 99,3 ± 7,9 μm). W kolejnym etapie fluorescencyjne mikrocząstki rozsypywano po dużej płaskiej powierzchni i "zalewano" roztworem fibroiny.
      Całość musi schnąć w ciemności w temperaturze otoczenia. Na koniec wystarczy przezroczysty film o grubości 150 μm podzielić na kwadraty. Co ważne, proces da się przeskalować do masowej produkcji.
      Choć po regeneracji fluorescencyjnego jedwabiu poszczególnych rodzajów cząstek nie dało się, oczywiście, rozróżnić gołym okiem, zachowywały one swoje fluorescencyjne właściwości; po oświetleniu białym światłem eCFP, eGFP, eYFP i mKate2 dają niebieski, zielony, żółty i czerwony kolor.
      Obecnie ekipa pracuje nad aplikacją na smartfony dla aptek i konsumentów. Nasz pomysł jest taki, by wykorzystać smartfon do oświetlenia tagu i zrobienia mu zdjęcia. Następnie aplikacja identyfikuje lek jako autentyczny bądź podrobiony - opowiada dr Jung Woo Leem.
      Leem dodaje, że tag działa przez co najmniej 2 miesiące bez degradacji białek. Teraz Amerykanie muszą potwierdzić, że trwałość znacznika może dorównać okresowi przydatności do spożycia leku i że nie wpływa on na kluczowe składniki (substancje aktywne) lub ich moc.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zaburzenia ze spektrum autyzmu nie mają ani wyraźnej patogenezy, ani nie istnieje dla nich leczenie farmaceutyczne, jednak coraz więcej badań sugeruje, że w ich przypadku mamy do czynienia z dysfunkcją układu odpornościowego i stanem zapalnym w konkretnych regionach mózgu.
      Amerykańsko-włoski zespół uczonych udowodnił, że kaskada cytokin jest powiązana z autyzmem. Do badań wykorzystano tkankę mózgową 8 zmarłych dzieci, u których przed śmiercią zdiagnozowano jedno z zaburzeń ze spektrum autyzmu.
      Na łamach PNAS naukowcy opisują unikatowy dla autyzmu sposób działania cytokin. Zaprezentowane przez nas dane wskazują na związek pomiędzy stanem zapalnym a chorobami ze spektrum autyzmu. Zauważyliśmy, że u dzieci z tymi zaburzeniami występuje w ciele migdałowatym i w grzbietowo-bocznej korze przedczołowej podwyższony poziom cytokiny przeciwzapalnej IL-37 oraz cytokiny prozapalnej IL-18 i jej receptora IL-18R, stwierdzają naukowcy z Boston University, Tufts University, Harvard University oraz Università degli Studi "Gabriele d'Annunzio" w Chieti.
      Uczeni podkreślili też, że skoro organizm próbuje zwalczać stan zapalny za pomocą IL-37, to właśnie na tej cytokinie, jako na potencjalnym środku leczącym autyzm powinny skupić się przyszłe badania. To o tyle słuszna uwaga, że już obecnie wykorzystuje się leki bazujące na interleukinach do walki z nowotworami.
      Aby udowodnić, że w autyzmie rzeczywiście mamy do czynienia z podniesionymi poziomami pro- i przeciwzapalnych cytokin, naukowcy porównali wspomniane wcześniej próbki tkanki mózgowej z tkanką mózgową pobraną od dzieci, które nie cierpiały na  autyzm. U nich nie stwierdzono zwiększonych poziomów cytokin.
      Irene Tsilioni i Susan Leeman mówią, że u dzieci z autyzmem występują również inne proteiny prozapalne. Cała gama molekuł, jak interleukina-1β, czynnik martwicy guza (TNF), interleukina-8 występuje w zwiększonej ilości w serum, płynie mózgowo-rdzeniowym i mózgu wielu pacjentów z autyzmem. Już wcześniej informowaliśmy o podniesionym poziomie neurotensyny u dzieci z autyzmem. W naszym laboratorium wykazaliśmy, że neurotensyna stymuluje geny i prowadzi do wydzielania prozapalnej cytokiny IL-1β oraz interleukiny-8 w komórkach mikrogleju. Wielu innych badaczy również informowało o aktywacji mikrogleju u dzieci z autyzmem, co wskazuje na stan zapalny, stwierdzili naukowcy.
      Leeman, Tsilioni i ich zespół jest przekonany, że stan zapalny jest niezwykle ważnym elementem rozwoju zaburzeń ze spektrum autyzmu, dlatego też uważają, że należy skupić się na opracowaniu leku na bazie IL-37, który mógłby stać się pierwszym lekarstwem je zwalczającym.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gdy zdrowa, ale nieaktywna osoba zacznie się ruszać, błyskawicznie zmienia się ekspresja genów w mięśniach szkieletowych. Naukowcy z Karolinska Institutet podkreślają, że to kwestia minut i wystarczy godzina ćwiczeń, by wzrosła aktywność genów wspomagających rozkład tłuszczów (Cell Metabolism).
      Nasze mięśnie są naprawdę plastyczne - twierdzi prof. Juleen Zierath. Szwedzi wykazali, że w DNA pobranym z mięśni szkieletowych ludzi, którzy właśnie ćwiczyli, jest mniej grup metylowych niż przed ćwiczeniami. Zmiany zachodzą w obrębie pasm DNA stanowiących "lądowisko" dla czynników transkrypcyjnych, które biorą udział we włączaniu genów odpowiedzialnych za adaptację mięśni do aktywności fizycznej.
      Badając zmiany epigenetyczne zachodzące wskutek forsownych ćwiczeń, Zierath, Romain Barrès i inni wykonali biopsje mięśnia udowego 8 mężczyzn, którzy prowadzili raczej siedzący tryb życia. Okazało się, że grupa metylowa zniknęła z kilku genów zaangażowanych w metabolizm tłuszczów. Demetylacja pozwalała na produkcję większej ilości białek.
      Zespół uważa, że za zaobserwowane zjawisko może odpowiadać uwalnianie jonów wapnia przez retikulum endoplazmatyczne komórek mięśniowych (ER zachowuje się tak pod wpływem potencjału czynnościowego, tutaj wywołanego ćwiczeniami). Kiedy pobrane próbki wystawiono na oddziaływanie kofeiny, która zwiększa poziom wapnia w mięśniach, także zaszła demetylacja. Zierath nie zaleca jednak zastępowania ruchu filiżanką kawy, bo mała czarna nie zapewnia pozostałych korzyści wynikających z ćwiczenia.
      Od jakiegoś czasu wiadomo, że ćwiczenia wywołują w mięśniach zmiany, w tym nasilenie metabolizmu cukrów i tłuszczów. My odkryliśmy, że najpierw zachodzą zmiany w metylacji. Co ciekawe, kiedy w laboratorium doprowadzano do skurczów mięśni, zachodziły identyczne zmiany epigenetyczne.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...