Jump to content
Forum Kopalni Wiedzy
  • ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Content

    • By KopalniaWiedzy.pl
      Analiza mikrobiomu XVII-wiecznego obrazu pokazała, że choć różne mikroorganizmy systematycznie niszczą dzieło sztuki, są też takie, które można by wykorzystać do jego ochrony.
      Na obraz składają się materiały organiczne i nieorganiczne (płótno, barwniki czy werniks), które stanowią idealne środowisko dla bakterii i grzybów. Zwiększa to, oczywiście, ryzyko biodegradacji.
      By opisać mikrobiom obrazu Incoronazione della Virgine Carla Bononiego (1620), zespół Elisabetty Caselli z Uniwersytetu w Ferrarze usunął fragment o powierzchni 4 mm2 (znajdował się on przy uszkodzeniu).
      Posługując się różnymi metodami hodowlanymi i mikroskopem skaningowym z urządzeniem do mikroanalizy rentgenowskiej (ang. scanning electron microscopy with energy dispersive spectrometer, SEM-EDS), Włosi zidentyfikowali szereg mikroorganizmów. Wyizolowali liczne szczepy gronkowców (Staphylococcus) i bakterii z rodzaju Bacillus, a także grzyby z rodzajów Aspergillus, Penicillium, Cladosporium i Alternaria.
      Autorzy artykułu z pisma PLoS ONE podkreślają, że niektóre barwniki z XVII-wiecznych farb stanowiły świetne źródło składników odżywczych dla mikroorganizmów.
      Gdy podczas testów posłużono się preparatem zawierającym spory 3 gatunków bakterii z rodzaju Bacillus (Bacillus subtilis, Bacillus pumilus i Bacillus megaterium), okazało się, że hamuje on wzrost bakterii i grzybów wyizolowanych z obrazu. Tego typu produkty mogłyby więc chronić dzieła sztuki, zapobiegając ich biodegradacji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Kraby pustelniki mieszkają w porzuconych ślimaczych muszlach. Ponieważ często są niewygodne, właściwie ciągle szukają nowych. Po przeprowadzce muszą na nowo zaznajamiać się z tym, jak teraz wyglądają i jak powinny się poruszać, dlatego stanowią świetny model do badania obrazu ciała.
      Dr Kohei Sonoda z Uniwersytetu w Kobe analizował z zespołem zachowanie krabów pustelników z gatunku Coenobita rugosus. Naukowcy przyklejali do muszli plastikowe płytki, przez co stawały się one źle wyważone. Później obserwowali, jak zwierzęta przemieszczają się korytarzem z naprzemiennymi zakrętami w prawo i lewo. Początkowo pustelniki miały problemy ze zrównoważeniem muszli, jednak w ciągu 10-20 s modyfikowały swój chód i zwiększały kąt wchodzenia w zakręty.
      Inny z członków zespołu, prof. Yukio Gunji, podkreśla, że dzięki krabom zyskujemy nowe informacje dot. świadomości ciała, składającej się ze schematu i obrazu ciała. Schemat to części, którymi można manipulować i nad którymi mamy kontrolę, a obraz to koncepcja ciała jako pewnej całości. Można też powiedzieć, że schemat stanowi informację na temat własnego ciała, która pozwala działać, np. jeździć rowerem, a obraz ciała daje możliwość stwierdzenia, co się z nami w danym momencie dzieje.
      Zakładamy, że obraz ciała jest dynamicznie uzgadniany ze schematem i w ten sposób powstaje świadomość ciała. Skromne C. rugosus pokazały, że rzeczywiście się tak dzieje. Japończycy uważają, że uzyskane wyniki zmieniają pogląd na posługiwanie się narzędziami. Kiedyś o narzędziach mówiono raczej w kontekście inteligencji, teraz akademicy skłaniają się bardziej ku koncepcji wirtualnego ciała.
    • By KopalniaWiedzy.pl
      Wielkość terytorium kolonii mrówek ograniczają koszty transportu. Naukowcy z Monash University widzą w tym analogię do rozwoju ludzkich miast. Badając owady, będzie więc można przewidzieć, co w przyszłości stanie się z naszymi metropoliami.
      Doktorzy Martin Burd i Andrew Bruce zbadali 18 kolonii dwóch gatunków mrówek-grzybiarek: Atta colombica i Atta cephalotes. Obliczając wskaźnik żerowania (liczbę obciążonych ładunkiem robotnic wracających do gniazda w jednostce czasu), naukowcy wzięli pod uwagę 3 czynniki: liczbę robotnic pracujących przy zbiórce liści, a także długość i szerokość tras.
      Australijczycy zajęli się właśnie mrówkami-grzybiarkami, bo tworzą one jedne z największych owadzich społeczności na świecie. Kolonia może się składać z 8 mln robotnic, podczas gdy u pszczół do podziału na podkolonie dochodzi, gdy ich liczba sięgnie ok. 40 tys. Burd i Bruce dodają, że przypominające ludzkie ulice trasy transportu liści mają niekiedy długość 150-200 m.
      W miarę wzrostu kolonii pojedyncze owady pracują tyle samo, ale wydłużenie trasy transportu oznacza, że dostarczenie tej samej ilości materiału roślinnego do gniazda wymaga więcej czasu. Można temu zaradzić, ekspediując do tego zadania więcej robotnic. Oczywiście istnieje granica, powyżej której koszt pozyskania jest wyższy od wartości zdobywanego materiału.
      Model przewiduje że długość drogi przyrasta szybciej niż liczba dostarczających liście robotnic, ale wpływ szerokości ścieżki był dla naukowców czymś niespodziewanym. Sugeruje to, że w grę wchodzi ważny mechanizm regulujący inwestycje kolonii w oczyszczanie trasy.
    • By KopalniaWiedzy.pl
      Małpy Nowego Świata (szerokonose) mają bardziej skomplikowany wzór na pysku, jeśli żyją w małych grupach lub dzielą obszar występowania z większą liczbą innych gatunków, co oznacza stosunkowo niewielkie prawdopodobieństwo spotkania swoich, a wysokie obcych, którzy mogą być przecież groźni.
      Ukari szkarłatne, których stada składają się niekiedy nawet ze 100 osobników, mają charakterystyczne jednolicie czerwone pyski, natomiast ponocnica mirikina, która żyje w małych grupach rodzinnych z partnerem i potomstwem, ma wokół oczu białe obwódki. Widać je tym lepiej, że usadowiły się na ciemnym tle.
      Wg Sharlene Santany z Uniwersytetu Kalifornijskiego w Los Angeles, u małp tworzących niewielkie stada rozbudowany wzór pomaga w odróżnianiu gatunków, zaś u małp tworzących duże grupy jednolite twarze ułatwiają rozpoznawanie poszczególnych osobników, o zwiększeniu skuteczności komunikacji za pomocą mimiki nie wspominając.
      Amerykanie sfotografowali pyski 129 gatunków małp szerokonosych. Uszeregowali je pod względem złożoności barwnego wzoru, pigmentacji skóry, a także długości i barwy włosów. Zestawili to z danymi dotyczącymi życia społecznego i ekologii każdego gatunku, uwzględniając związki ewolucyjne, które mogły doprowadzić do powstania podobnego wzoru u dwóch spokrewnionych gatunków.
      Tak jak przewidywano, habitat określał ubarwienie i owłosienie pyska, bo małpy żyjące w mrocznych, wilgotnych lasach Amazonii miały ciemniejsze brody i włosy na obwodzie mózgoczaszki. Naukowcy sądzą, że pomaga to we wtopieniu się w otoczenie. Dla odmiany małpy występujące na obszarach intensywnego promieniowania ultrafioletowego odznaczały się ciemniejszymi wzorami wokół oczu ("okularami"), co chroniło je przed szkodliwym wpływem UV. Pyski zwierząt zajmujących oddalone od równika chłodniejsze habitaty porastały za to dłuższymi włosami.
      W kontekście presji ewolucyjnej związanej z kontaktami społecznymi naukowcy wspominają o kontrastowym ubarwieniu pyska sajmiri boliwijskiej (Saimiri boliviensis) z jasną oprawą oczu i ciemną kufą. Ponieważ małpy te nieczęsto się spotykają, charakterystyczny wygląd pozwala od razu wypatrzeć rozsianych rzadko po lesie pobratymców. Dla małp tworzących duże stada od wzoru i koloru ważniejsze są kształty i rozmiary poszczególnych elementów pyska - bo tym właśnie różnią się od siebie poszczególni członkowie grupy. Poza tym mniej skomplikowane wzory eksponują mimikę, a bez właściwego jej odczytywania trudno mówić o harmonii i przestrzeganiu zasad życia społecznego.
      W przyszłości zespół Santany zamierza się przyjrzeć ewentualnemu wpływowi życia społecznego na wygląd pysków innych małp i ssaków.
    • By KopalniaWiedzy.pl
      Mózgi małych pająków, np. nimf z rodzaju Mysmena, są tak duże, że wypełniają jamy ciała i wnikają do odnóży. Naukowcy ze Smithsonian Tropical Research Institute (STRI) zauważyli to, gdy badając wpływ miniaturyzacji na rozmiary mózgu i zachowanie, mierzyli ośrodkowy układ nerwowy 9 gatunków pająków różnej wielkości.
      Znalazły się wśród nich olbrzymie pająki z lasów deszczowych (np. Nephila clavipes) oraz zwierzęta nie większe od łebka szpilki. Naukowcy stwierdzili, że pomniejszeniu gabarytów ciała towarzyszy relatywne powiększenie mózgu - oznacza to, że wypełnia on większą część jamy ciała.
      Im mniejsze zwierzę, tym więcej musi zainwestować w swój mózg, co oznacza, że nawet bardzo małe pająki są w stanie uprząść sieć i wykonywać inne dość złożone czynności. Odkryliśmy, że ośrodkowy układ nerwowy najmniejszych pająków wypełnia niemal 80% ogółu jamy ciała, w tym ok. 25% odnóży - tłumaczy William Wcislo ze STRI, jedynego leżącego poza obszarem USA, bo w Panamie, biura Smithsonian Institution.
      Co ciekawe, okazało się, że najmniejsze nimfy mają nawet zdeformowane ciała z uwypukleniami wypełnionymi "nadmiarem" mózgu. Stopień miniaturyzacji neuronów ogranicza jądro, którego pająki nie eliminują. Średnicy aksonów również nie da się jeszcze bardziej zmniejszyć, bo mogłoby to zaburzyć przepływ jonów i sygnały nie byłyby prawidłowo przewodzone. Jak widać, nie było więc innego wyjścia, jak przeznaczyć więcej miejsca na układ nerwowy...
      Podejrzewaliśmy, że młode pająki mogą być głównie mózgiem, ponieważ ogólna zasada dla zwierząt, zwana regułą Hallera, mówi, że w miarę spadku rozmiarów ciała wzrasta objętość zajmowana przez mózg. Ludzki mózg stanowi 2-3% masy ciała, tymczasem mózgi najmniejszych mierzonych przez nas mrówek stanowią ok. 15% ich biomasy, a niektóre pająki są nawet mniejsze.
×
×
  • Create New...