Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Zestresowane prątki popełniają samobójstwo

Recommended Posts

Naukowcy zidentyfikowali nową klasę leków, które potrafią doprowadzić prątki gruźlicy do samobójstwa w wyniku zatrucia fosforanem pewnego dwucukru.

Z pojawieniem się antybiotyków gruźlica stała się uleczalna i w pewnym momencie wierzono nawet w całkowite wyeliminowanie tej choroby. Jednak z powodu biedy, śmiertelnej współpracy z wirusem HIV i pojawienia się lekoopornych szczepów bakterii, które są praktycznie całkowicie niewrażliwe na obecnie stosowane metody terapii, ponownie stała się globalnym zagrożeniem dla ludzkości – tłumaczy dr Steph Bornemann z John Innes Centre w Norwich. Jego koledzy i specjaliści z Albert Einstein College of Medicine of Yeshiva University w Nowym Jorku niezależnie ustalili, jak działa GlgE, jeden z enzymów Mycobacterium tuberculosis. Już wspólnie Brytyjczycy i Amerykanie zidentyfikowali angażującą go 4-etapową ścieżkę metaboliczną, którą obierają na cel leki przeciwgruźlicze nowej generacji.

Badacze zauważyli, że zablokowanie GlgE powoduje toksyczne nagromadzenie wewnątrz komórek bakteryjnych fosfocukru – maltozo-1-fosforanu. M. tuberculosis reagują na to, wytwarzając jeszcze więcej tego związku.

Naukowcy przygotowali się na ewentualność wykształcenia oporności na leki anty-GlgE. GlgE nie występuje u ludzi, dlatego można go bez obaw inaktywować farmakologicznie. Niewykluczone, że trehaloza, disacharyd występujący w naszej diecie, mógłby zwiększyć siłę oddziaływania preparatu anty- GlgE. Docierając do komórek bakteryjnych, byłby w stanie dodatkowo podnieść stężenie maltozo-1-fosforanu.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wykorzystywana w średniowieczu mikstura - balsam oczny Balda (ang. Bald's eyesalve) - może znaleźć zastosowanie we współczesnej terapii. Naukowcy z Uniwersytetu w Warwick wykazali, że jest on skuteczny wobec szeregu patogenów Gram-dodatnich i Gram-ujemnych w hodowlach planktonowych, a także wobec 5 bakterii hodowanych w formie biofilmu.
      Bald's eyesalve opisano w staroangielskim (IX-w.) podręczniku medycznym Bald's Leechbook (zwanym także Medicinale Anglicum). Miksturę stosowano na jęczmień - torbielowatą infekcję powieki. Przyrządzano ją z czosnku, dodatkowej rośliny z rodzaju Allium (czosnek), np. cebuli lub pora, wina i krowich kwasów żółciowych. Zgodnie z recepturą, po zmieszaniu, a przed użyciem składniki muszą stać przez 9 nocy w mosiężnym naczyniu.
      Pięć lat temu naukowcy z Uniwersytetu w Nottingham wykorzystali Bald's eyesalve do walki z metycylinoopornym gronkowcem złocistym (MRSA). Opierając się na ich badaniach, zespół z Warwick ustalił, że Bald's eyesalve wykazuje obiecujące działanie antybakteryjne i tylko w niewielkim stopniu szkodzi ludzkim komórkom.
      Mikstura była skuteczna przeciw szeregowi bakterii Gram-dodatnich i Gram-ujemnych w hodowlach planktonowych. Aktywność utrzymywała się także przeciwko 5 bakteriom hodowanym w postaci biofilmu: 1) Acinetobacter baumannii, 2) Stenotrophomonas maltophilia, 3) gronkowcowi złocistemu (Staphylococcus aureus), 4) Staphylococcus epidermidis i 5) Streptococcus pyogenes.
      Bakterie te można znaleźć w biofilmach infekujących cukrzycowe owrzodzenie stopy (tutaj zaś, jak wiadomo, sporym problemem może być lekooporność).
      Jak wyjaśniają naukowcy, w skład balsamu ocznego Balda wchodzi czosnek, a ten zawiera allicynę (fitoncyd o działaniu bakteriobójczym). W ten sposób można by wyjaśnić aktywność mikstury wobec hodowli planktonowych. Sam czosnek nie wykazuje jednak aktywności wobec biofilmów, dlatego antybiofilmowego działania Bald's eyesalve nie da się przypisać pojedynczemu składnikowi. By osiągnąć pełną aktywność, konieczne jest ich połączenie.
      Wykazaliśmy, że średniowieczna mikstura przygotowywana z cebuli, wina i kwasów żółciowych może zabić całą gamę problematycznych bakterii, hodowanych zarówno w formie planktonowej, jak i biofilmu. Ponieważ mikstura nie powoduje większych uszkodzeń ludzkich komórek i nie szkodzi myszom, potencjalnie moglibyśmy opracować z tego środka bezpieczny i skuteczny lek antybakteryjny - podkreśla dr Freya Harrison.
      Większość wykorzystywanych współcześnie antybiotyków pochodzi od naturalnych substancji, ale nasze badania unaoczniają, że pod kątem terapii zakażeń związanych z biofilmem należy eksplorować nie tylko pojedyncze związki, ale i mieszaniny naturalnych produktów.
      Szczegółowe wyniki badań opublikowano w piśmie Scientific Reports.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Lekarze i pielęgniarki z Holandii będą pierwszymi, na których zostanie przetestowany nowy pomysł na walkę z epidemią koronawirusa. Otrzymają oni szczepionkę przeciwko gruźlicy, by sprawdzić, czy pobudzi ona układ odpornościowy i zapewni lepszą ochronę przed zarażeniem.
      Podobne testy rozpoczną się wkrótce w 3 kolejnych krajach. W Holandii do testów zostanie zaproszonych 1000 pracowników służby zdrowia. Zdecydowano się na przeprowadzenie badań na tej właśnie grupie, gdyż to właśnie ona jest narażona na większe ryzyko zachorowania.
      Badani – pracownicy 8 holenderskich szpitali – otrzymają albo placebo, albo szczepionkę BCG. Po raz pierwszy została ona użyta w 1921 roku. Zawiera ona atenuowany (osłabiony) szczep Mycobacterium bovis, która wywołuje gruźlicę u bydła. To tania szeroko dostępna szczepionka, podawana dzieciom w pierwszych miesiącach życia. Jest jednak daleka od doskonałości. Chroni około 60% dzieci. Pomiędzy krajami występują duże różnice. Na przykład w USA jest mało skuteczna, więc stosuje się ją w bardzo ograniczonym zakresie.
      Generalnie szczepionki wzmacniają odpowiedź immunologiczną organizmu odnośnie konkretnego patogenu. Jednak z wielu badań wynika, że BCG pomaga organizmowi zwalczać nie tylko gruźlicę. Duńscy badacze Peter Aaby i Christine Stabell Benn, którzy żyją i pracują w Gwinei Bissau, przeprowadzili w ciągu ostatnich dziesięcioleci wiele badań klinicznych i obserwacyjnych, z których wynika, że BCG chroni również przed innymi patogenami niż bakteria gruźlicy. Ich zdaniem w ciągu roku po podaniu BCG chroni przed 30% infekcji bakteryjnych i wirusowych.
      Prowadzone badania na ten temat były krytykowane za braki metodologiczne. W 2014 roku WHO przeprowadziło analizę badań i stwierdziło, że prawdopodobnie BCG zmniejsza śmiertelność u dzieci. Podkreślono jednak, że wiarygodność badań jest bardzo niska. Jednak w 2016 roku ukazała się kolejna analiza, bardziej przychylnie oceniająca możliwości BCG. Od tamtej pory ukazało się więcej badań potwierdzających, że BCG może wzmacniać układ odpornościowy.
      Autor jednego z nich, Mihai Netea, ekspert od chorób zakaźnych z Radbound University Medical Center, stwierdził nawet, że BCG może rzucać wyzwanie naszej wiedzy dotyczącej działania układu odpornościowego.
      Gdy patogen przedostaje się do naszego organizmu, najpierw dochodzi do nieswoistej – wrodzonej – reakcji układu odpornościowego. Później ma miejsce odpowiedź swoista (nabyta). To właśnie ten drugi rodzaj odporności związany jest z atakiem na konkretny patogen i pamięcią układu odpornościowego. Gdy wróg zostaje pokonany, część limfocytów T i wytwarzających przeciwciała limfocytów B pozostaje w organizmie, zamieniając się w rodzaj specyficznej „pamięci”, dzięki której przy ponownym kontakcie z tym samym patogenem dochodzi do szybszej reakcji. Właśnie ten mechanizm wykorzystują szczepionki.
      Do niedawna sądzono, że wrodzony (nieswoisty) układ odpornościowy nie posiada pamięci. Jednak Netea i jego zespół odkryli, że szczepionka BCG stymuluje nieswoisty układ odpornościowy przed dłuższy czas. Netea nazwał to zjawisko wyćwiczoną odpornością. Podczas eksperymentów z roku 2018 naukowcy wykazali, że BCG chroniło przed infekcją osłabionym wirusem żółtej gorączki.
      Jeszcze przed wybuchem epidemii COVID19 Natea i Evangelos Giamarellos z Uniwersytetu w Atenach zaczęli planować badania, których celem jest sprawdzenie, czy BCG wzmacnia układ odpornościowy osób starszych. Podobne badania mają odbyć się w Holandii. Inną grupą, którą planowano badać, są pracownicy służby zdrowia. W sytuacji pandemii wyniki takich badań mogą być tylko bardziej wiarygodne.
      Testy będą randomizowane, ale ich uczestnicy prawdopodobnie domyślą się, czy dostali szczepionkę czy placebo. BCG często powoduje krostę w miejscu podania, która może pozostawać na skórze wiele miesięcy i przeistoczyć się w bliznę. Badacze nie będą informowani, w której grupie – placebo czy szczepionki – jest konkretny badany.
      Pomysł Netei spotkał się z bardzo dobrym przyjęciem wśród badaczy i pracowników służby zdrowia. Na tyle dobrym, że badania według zaproponowanego przezeń protokołu postanowili przeprowadzić też Australijczycy, Brytyjczycy i Niemcy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Prątki gruźlicy (Mycobacterium tuberculosis) produkują związek, który wyzwalając kaszel, pomaga im się rozprzestrzeniać. Naukowcy z UT Southwestern, których artykuł na ten temat ukazał się właśnie w piśmie Cell, uważają, że ich odkrycie może doprowadzić do opracowania nowych metod zapobiegania szerzeniu gruźlicy, która rokrocznie odpowiada za śmierć ponad 1,5 mln osób na świecie.
      Ludzie od bardzo dawna wiedzą, że kaszel jest podstawowym objawem gruźlicy i że to on odpowiada za szerzenie choroby. Jak jednak podkreśla dr Michael Shiloh, przyczyna gruźliczego kaszlu pozostawała nieznana. Dominowała hipoteza, że kaszel jest wyzwalany przed podrażnienie dróg oddechowych i stan zapalny (nie udało się tego jednak ostatecznie potwierdzić).
      Zespół Shiloha zaprezentował zupełnie inny pomysł. Wg Amerykanów, M. tuberculosis miały produkować substancję wyzwalającą kaszel.
      By przetestować tę hipotezę, akademicy najpierw skupili się na świnkach morskich, zwierzętach często wykorzystywanych zarówno do badania gruźlicy, jak i kaszlu. Mimo że świnki są eksperymentalnym modelem infekcji gruźliczej od ponad stulecia, nie było jasne, czy gruźlica powoduje, że gryzonie te kaszlą. Chcąc zdobyć odpowiedź na to pytanie, badacze umieścili zakażone prątkami gruźlicy świnki w komorach WBP (ang. whole-body plethysmography, WBP), czyli komorach do pletyzmografii całego ciała, in. bodypletyzmografii.
      Jak wyjaśniają specjaliści, oddychanie powoduje zmiany objętości ciała, a także ciśnienia w kabinie. Są one wprost proporcjonalne do zmian objętości klatki piersiowej i odwrotnie proporcjonalne do zmian ciśnienia pęcherzykowego.
      W tym przypadku komory rejestrowały zmiany ciśnienia i objętości powodowane przez kaszel. Okazało się, że po pewnym czasie zwierzęta zarażone M. tuberculosis kaszlały znacząco więcej niż te wolne od gruźlicy z grupy kontrolnej.
      Aby ustalić, czy bakterie produkują związek wyzwalający kaszel, naukowcy izolowali i testowali różne związki z prątków. W ten sposób próbowali stwierdzić, 1) czy mogą one spowodować, że zwierzę będzie kaszleć i 2) czy wyhodowane w laboratorium neurony nocyceptywne (bólowe) będą się pod ich wpływem zachowywać tak, jakby zostały aktywowane, aby wywołać odruch kaszlu.
      Po serii eksperymentów ze związkami pozyskanymi z prątków gruźlicy oraz innych gatunków bakterii z rodzaju Mycobacterium Shiloh zidentyfikował sulfolipid-1 (SL-1) jako główną substancję aktywującą neurony in vitro. Spostrzeżenie dot. działania ekstraktu z prątków (Mtb extract) zostało potwierdzone na ludzkich neuronach czuciowych zwojów rdzeniowych (DRG).
      Wyciągi z mutantów niewytwarzających SL-1 nie aktywowały neuronów in vitro ani nie wywoływały kaszlu u świnek. U zainfekowanych nimi gryzoni rozwijały się wszelkie objawy gruźlicy, kaszlu jednak nie było.
      Wystawienie na oddziaływanie oczyszczonego SL-1 pobudzało świnki do kaszlu.
      Biorąc pod uwagę wszystkie zdobyte informacje, Shiloh uważa, że prątki wytwarzają SL-1, by wywołać odruch kaszlu i rozprzestrzenić się z osób chorych na zdrowe. Amerykanin dodaje, że jeśli badania wykażą, że hamowanie kaszlu nie jest szkodliwe dla zakażonych, specjaliści będą mogli opracować metodę zapobiegania transmisji na drodze przeciwdziałania SL-1 lub zahamowania jego produkcji.
      W wielu miejscach, gdzie gruźlica jest endemiczna, ludzie z aktywną chorobą nie są często przyjmowani do szpitala, tylko odsyłani do domu z antybiotykiem. Nawet gdy otrzymują właściwe leczenie, kaszlą miesiącami i rozprzestrzeniają chorobę. Pewnego dnia lekarze będą być może przepisywali łącznie antybiotyki i leki zapobiegające kaszlowi. Dzięki temu choroba się nie rozprzestrzeni.
      Shiloh dodaje, że dla odmiany SL-1 będzie można wykorzystać, by pomóc pacjentom kaszleć, gdy jest to korzystne, np. w przypadku mukowiscydozy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Lekooporność staje się coraz poważniejszym problemem. Powodujące zakażenia szpitalne pałeczki okrężnicy (Escherichia coli) i pałeczki zapalenia płuc (Klebsiella pneumoniae) stały się oporne na większość antybiotyków. Brakuje nowych substancji, które wykazywałyby aktywność wobec zabezpieczonych zewnętrzną błoną komórkową bakterii Gram-ujemnych. Ostatnio jednak międzynarodowy zespół odkrył peptyd, który atakuje takie bakterie od niespodziewanej strony.
      Od lat 60. naukowcom nie udało się opracować nowej klasy antybiotyków skutecznych w walce z bakteriami Gram-ujemnymi, teraz jednak, z pomocą nowego peptydu, może się to udać - podkreśla prof. Till Schäberle z Uniwersytetu Justusa Liebiga w Gießen.
      Zespół prof. Kim Lewis z Northwestern University skupił się na bakteryjnych symbiontach (Photorhabdus) entomopatogenicznych nicieni. W ten sposób zidentyfikowano nowy antybiotyk - darobaktynę (ang. darobactin).
      Jak napisał w przesłanym nam mailu prof. Schäberle, początkowo darobaktynę wyizolowano z P. temperata HGB1456. Po zidentyfikowaniu genów kodujących biosyntezę, naukowcy zdali sobie jednak sprawę, że do grupy potencjalnych producentów należy zaliczyć o wiele więcej szczepów [Photorhabdus – red.].
      Substancja nie wykazuje cytotoksyczności, a to warunek konieczny dla antybiotyku. Zyskaliśmy już wgląd, w jaki sposób bakteria syntetyzuje tę cząsteczkę. Obecnie pracujemy [...] nad zwiększeniem jej produkcji [w warunkach laboratoryjnych jest ona niewielka] i nad stworzeniem analogów.
      Naukowcy wykazali, że darobaktyna wiąże się z białkiem BamA (ang. β-Barrel assembly machinery protein A), które odgrywa krytyczną rolę w biogenezie białek zewnętrznej błony komórkowej. Powstawanie funkcjonalnej zewnętrznej błony zostaje zaburzone i bakterie giną. Należy odnotować, że nieznany wcześniej słaby punkt jest zlokalizowany na zewnątrz, dzięki czemu pozostaje łatwo dostępny.
      Autorzy artykułu z pisma Nature podkreślają, że darobaktyna dawała świetne efekty w przypadku zakażeń wywoływanych zarówno przez dzikie, jak i antybiotykooporne szczepy E. coli, K. pneumoniae i pałeczki ropy błękitnej (Pseudomonas aeruginosa).
      Zespół uważa, że uzyskane wyniki sugerują, że bakteryjne symbionty zwierząt zawierają antybiotyki, które doskonale nadają się do rozwijania terapeutyków.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Antybiotykooporność to jeden z największych problemów, z którymi przychodzi właśnie mierzyć się ludzkości. Już w tej chwili na terenie Unii Europejskiej każdego roku z powodu antybiotykooporności umiera 25 000 osób. Jeśli nie poradzimy sobie z tym problemem, to w roku 2050 na całym świecie będzie umierało 10 milionów osób rocznie z powodu oporności bakterii na stosowane antybiotyki.
      Tym bardziej należy cieszyć się, że powstał nowy środek chemiczny, który skutecznie identyfikuje i zabija antybiotykooporne superbakterie Gram-ujemne. Jest on dziełem doktorantki Kirsty Smitten, a prace nad nim prowadzą naukowcy z University of Sheffield i Rutheford Appleton Laboratory.
      Bakterie Gram-ujemne, a należy do nich np. E. coli, są odpowiedzialne za wiele niebezpiecznych infekcji, w tym zapalenie płuc, infekcje układu moczowego czy krwionośnego. Bardzo trudno się je zwalcza, gdyż środki chemiczne mają problem z przeniknięciem ściany komórkowej bakterii. Od 50 lat nie pojawiła się żadna nowa metoda zwalczania bakterii Gram-ujemnych, a ostatni lek, który potencjalnie mógłby je zwalczać, wszedł w fazę testów klinicznych w 2010 roku.
      Nowy związek chemiczny ma kilka istotnych cech. Wykazuje luminescencję, co oznacza, że można śledzić sposób, w jaki działa na bakterie. To zaś umożliwia prace nad nowymi terapiami.
      Dotychczasowe badania wskazują, że wspomniany związek działa na kilka różnych sposobów, co powoduje, że bakteriom trudno będzie wyrobić oporność. Na razie testowany był na mikroorganizmach opornych na jeden rodzaj antybiotyków. W najbliższym czasie rozpoczną się testy na bakteriach wielolekoopornych.
      Niedawno Światowa Organizacja Zdrowia opublikowała raport, w którym wymieniała kilkanaście Gram-ujemnych bakterii jako jedne z największych zagrożeń dla ludzi i stwierdziła, że znalezienie środków je zwalczających jest priorytetem, gdyż bakterie te powodują choroby o wysokiej śmiertelności, bardzo szybko ewoluuje u nich antybiotykooporność, a zakażeniami często dochodzi w szpitalach.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...