Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'urządzenia medyczne' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. Badacze z Yale University i National Institute of Standards and Technology (NIST) ulepszyli działanie elektocytów węgorza elektrycznego (Electrophorus electricus). Dzięki temu uzyskują wyższe napięcie, które mają nadzieję wykorzystać do zasilania implantów i innych aparatów medycznych. Elektrocyty tworzą szeregi, zlokalizowane po bokach wzdłuż płetwy odbytowej. Są połączone na zasadzie baterii ogniw galwanicznych, oddziela je galaretowata tkanka. Jedna komórka nie jest w stanie wytworzyć wysokiego napięcia (generuje dziesiąte części wolta), ale cały szereg jak najbardziej tak (600 woltów). Gdy zadziała bodziec chemiczny, otwierają się kanały jonowe. Kationy sodu napływają do wnętrza, a kationy potasu przemieszczają się na zewnętrzną stronę błony komórkowej. Przemieszczanie się jonów zwiększa napięcie, przez co otwiera się coraz więcej kanałów, a po przekroczeniu pewnego punktu proces zaczyna się samonapędzać. Na końcu kanały się zamykają, a aktywny transport jonów przywraca stan wyjściowy. David LaVan, inżynier z NIST, uważa, że w grę wchodzi co najmniej 7 typów kanałów, na które można wpłynąć, manipulując różnymi zmiennymi, np. gęstością rozmieszczenia w błonie. Elektrocyty działają w inny sposób niż neurony. Komórki nerwowe przewodzą, wg Amerykanów, raczej informację, a nie energię. Szybko się wyładowują, nie osiągając przy tym dużej mocy. Elektrocyty reagują wolniej, ale generują wyższe napięcie, które dłużej się utrzymuje. LaVan i Jian Xu opracowali model konwersji stężenia jonów na impulsy elektryczne. Przetestowali go i na podstawie wyników sprecyzowali, jak zmaksymalizować napięcie, zmieniając proporcje i ułożenie różnych typów kanałów. Udało im się uzyskać sztuczną komórkę, która w jednym pulsie generuje o 40% silniejszy sygnał. Druga wersja też działa lepiej od oryginału, szczytowe napięcie jest bowiem wyższe o 28%. Gdy sztuczne elektrocyty ułoży się warstwami w sześcian o boku nieco powyżej 4 mm, można uzyskać stałą moc (300 mikrowatów) do zasilania niewielkich urządzeń medycznych.
  2. Nowe badania wykazały, że nanodiamenty są bezpieczne i można je wykorzystywać jako cząsteczki dostarczające leki, substancję powlekającą implanty, nanoroboty i inne urządzenia medyczne (The Journal of Physical Chemistry B). Liming Dai z University of Adyton, Saber M. Hussain i inni wyjaśniają, że dzięki postępom technologicznym udało się wytworzyć kolejną (udoskonaloną) generację nanodiamentów. Chociaż diamenty (odmiana alotropowa węgla) są nieczynne chemicznie i biokompatybilne, nanomateriały zachowują się często inaczej niż ich zwykłe wersje. Stąd wzięły się obawy, że diamenty w skali nano mogą toksycznie oddziaływać na komórki. Jako pierwsi ocenialiśmy cytotoksyczność nanodiamentów różnej wielkości: od 2 do 10 nm. Wykluczyliśmy tego typu ryzyko w odniesieniu do całej gamy komórek. Wyniki sugerują, że nanodiamenty mogą znaleźć zastosowanie w rozmaitych aplikacjach [...].
×
×
  • Dodaj nową pozycję...