Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'spaser'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 2 results

  1. Profesor Xiang Zhang z Uniwersytetu Kalifornijskiego w Berkeley nie rzuca słów na wiatr. Przed dwoma laty wraz ze swoim zespołem połączył metalowe plazmonowe soczewki z "latającą głowicą" udoskonalając proces litograficzny i obiecał, że w ciągu 3-5 lat nowa technologia znajdzie komercyjne zastosowanie. Już rok później znacząco udoskonalił plazmonowy laser (spaser), dzięki czemu jest on w stanie wygenerować światło na przestrzeni zaledwie 5 nanometrów. Teraz ze swoimi współpracownikami stworzył technikę, która pozwala plazmonowym laserom pracować w temperaturze pokojowej. Dotychczas wymagały one bardzo niskich temperatur, co uniemożliwiało ich praktyczne zastosowanie. Lasery plazmonowe pozwalają na stworzenie bioczujników składających się z pojedynczej molekuły, fotonicznych obwodów scalonych czy bardzo wydajnych optycznych systemów komunikacyjnych, ale żeby to wszystko wyprodukować, musimy zmusić lasery do pracy w temperaturze pokojowej - mówił Zhang. Dotychczas lasery plazmonowe działały w komorach próżniowych i temperaturze 10 kelwinów, czyli około -263 stopni Celsjusza. W wyższych temperaturach światło takich laserów ulega dużemu rozproszeniu, co wymagało zwiększenia natężenia pozostałego światła, a to można było osiągnąć w niezwykle niskich temperaturach. Zespół Zhanga postanowił skorzystać z ciekawego zjawiska, którego możemy doświadczyć w wielu budynkach (np. na Grand Central Terminal w Nowym Jorku). W przykrytych dachem owalnych pomieszczeniach dźwięk emitowany z jednego końca zostaje odbity i wędruje do drugiego końca, dzięki czemu bardzo oddalone osoby mogą rozmawiać tak, jakby stały obok siebie. Uczeni wykorzystali podobny pomysł do odbijania plazmonów. Na srebrze najpierw umieszczono 5-nanometrowej grubości warstwę fluorku magnezu, a na nią nałożono siarczek kadmu o grubości 45 nanometrów i długości 1 mikrometra. Dzięki takiej architekturze światło udało się wygenerować na przestrzeni 20 nanometrów, to 20-krotnie mniej niż długość jego fali, i wzmocnić aż 18-krotnie. Taki laser działa w temperaturze pokojowej i do pracy nie wymaga próżni.
  2. Dzięki pracom uczonych z Purdue University do słownika techniki wejdzie słowo "spaser". Termin ten powstał w 2003 roku na opisanie zjawiska "wzmacniania plazmonów powierzchniowych poprzez wymuszoną emisję promieniowania" (Surface Plasmon Amplification by Stimulated Emission of Radiation). Spaser możemy uznać za rodzaj lasera, jednak jest urządzeniem tak małym, że równie niewielkiego lasera nie jesteśmy w stanie wybudować. Emituje on światło widzialne, a dzięki niewielkim rozmiarom możliwe będzie zintegrowanie go w układzie scalonym, co pozwoli na zbudowanie superszybkich komputerów wykorzystujących światło do przeprowadzania obliczeń, zaawansowanych czujników czy urządzeń do obrazowania. Spaser działa dzięki plazmonom powierzchniowym, czyli elektromagnetycznym falom powierzchniowym o polaryzacji typu p. Fale te rozprzestrzeniają się wzdłuż powierzchni styku dwóch materiałów, których stałe dielektryczne mają przeciwne znaki. Naukowcom udało się zaprzęgnąć te fale do stworzenia spasera. Dzięki temu zbudowali "nanolaser oparty na spaserze", który składał się ze sfer o średnicy 44 nanometrów. Spasery zawierały złoty rdzeń otoczony przez podobną do szkła powierzchnię, która była wypełniona zielonym barwnikiem. Po oświetleniu rdzenia, plazmony generowane przez złoto były wzmacniane przez barwnik, następnie konwertowano je na fotony i emitowano jak światło laserowe. Właśnie użycie plazmonów pozwoliło na stworzenie tak niewielkiego urządzenia. Tradycyjnych laserów nie można w nieskończoność pomniejszać, gdyż optyczny rezonator, konieczny do wzmocnienia fotonów, musi być wielkości co najmniej połowy długości fali emitowanego światła. Użycie plazmonów w miejsce fotonów pozwoliło na zastosowanie rezonatora wielkości 44 nanometrów, a więc kilkunastokrotnie mniejszego od 530-nanometrowej fali emitowanej przez spaser. W przyszłości naukowcy chcą generować plazmony za pomocą prądu elektrycznego, a nie światła, dzięki czemu umieszczenie spasera w układzie scalonym i jego wykorzystanie np. w komputerach będzie znacznie łatwiejsze. Prace te to ważny krok naprzód, który, dzięki zastosowaniu skali znacznie mniejszej niż długość fali światła widzialnego, może być początkiem rewolucji w nanofotonice - stwierdził Timothy D. Sands, dyrektor Birck Nanotechnology Center na Purdue Univeristy.
×
×
  • Create New...