Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'procesor kwantowy'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 2 results

  1. Najnowszy numer Nature przynosi przełomowe informacje na temat praktycznego wykorzystania komputerów kwantowych. Naukowcy z Uniwersytetu Nowej Południowej Walii (UNSW) wykazali, że możliwe jest stworzenie niemal wolnego od błędów krzemowego procesora kwantowego. Dzisiejsza publikacja pokazuje, że obliczenia przeprowadzane przez nasz procesor były w ponad 99% wolne od błędów. Gdy odsetek błędów jest tak mały, możliwym staje się ich wykrywanie i korygowanie w czasie rzeczywistym. A to oznacza, że można wybudować skalowalny komputer kwantowy wykonujący wiarygodne obliczenia, wyjaśnia profesor Andrea Morello z UNSW. Morello stoi na czele zespołu złożonego z naukowców z Australii, USA, Japonii i Egiptu. Ich celem jest zbudowanie uniwersalnego komputera kwantowego, czyli maszyny, której możliwości obliczeniowe nie będą ograniczone do jednego rodzaju zadań. Badania, których wyniki właśnie opublikowaliśmy, to bardzo ważny krok w tym kierunku, podkreśla uczony. Jednak, co niezwykle ważne, artykuł Morello i jego zespołu to jeden z trzech tekstów z Nature, których autorzy informują o niezależnym od siebie osiągnięciu niskiego odsetka błędów w opartych na krzemie procesorach kwantowych. Z najnowszego Nature, którego redakcja zdecydowała się na zilustrowanie kwantowego przełomu na okładce, dowiadujemy się, że wiarygodność operacji obliczeniowych na jednym kubicie osiągnięta przez Morello i jego zespół wyniosła 99,95%, a operacji na dwóch kubitach – 99,37%. Niezależnie od nich zespół z holenderskiego Uniwersytetu Technologicznego w Delft, prowadzony przez Lievena Vandersypena osiągnął wiarygodność rzędu 99,87% przy operacjach na jednym kubicie i 99,65% podczas operacji dwukubitowych. W trzecim z artykułów czytamy zaś o pracach naukowców z japońskiego RIKEN, w trakcie których grupa Seigo Taruchy mogła pochwalić się wiarygodnością 99,84% przy działaniach na jednym kubicie i 99,51% przy pracy z dwoma kubitami. Wydajność procesorów z UNSW i Delft została certyfikowana zaawansowaną metodą gate set tomography opracowaną przez amerykańskie Sandia National Laboratories, a wyniki certyfikacji zostały udostępnione innym grupom badawczym. Zespół profesora Morello już wcześniej wykazał, że jest w stanie utrzymać kwantową informację w krzemie przez 35 sekund. W świecie kwantowym 35 sekund to wieczność. Dla porównania, słynne nadprzewodzące komputery kwantowe Google'a i IBM-a są w stanie utrzymać taką informację przez około 100 mikrosekund, czyli niemal milion razy krócej, zauważa Morello. Osiągnięto to jednak izolując spiny (kubity) od otoczenia, co z kolei powodowało, że wydaje się niemożliwym, by kubity te mogły wejść ze sobą w interakcje, a więc nie mogły wykonywać obliczeń. Teraz z artykułu w Nature dowiadujemy się, że udało się pokonać problem izolacji wykorzystując elektron okrążający dwa jądra atomu fosforu. Gdy masz dwa jądra połączone z tym samym elektronem, może zmusić je do wykonywania operacji kwantowych, stwierdza doktor Mateusz Mądzik, jeden z głównych autorów eksperymentów. Gdy nie operujesz na elektronie, jądra te mogą bezpiecznie przechowywać kwantowe informacje. Teraz jednak mamy możliwość, by jądra wchodziły w interakcje za pośrednictwem elektronu i w ten sposób możemy wykonywać uniwersalne operacje kwantowe, które mogą rozwiązywać każdy rodzaj problemów obliczeniowych, wyjaśnia Mądzik. Gdy splączemy spiny z elektronem, a następnie możemy elektron ten przesunąć w inne miejsce i splątać go z kolejnymi kubitami, tworzymy w ten sposób duże macierze kubitów zdolnych do przeprowadzania solidnych użytecznych obliczeń, dodaje doktor Serwan Asaad. Jak podkreśla profesor David Jamieson z University of Melbourne, atomy fosforu zostały wprowadzone do krzemowego procesora za pomocą tej samej metody, jaka jest obecnie używana w przemyśle półprzewodnikowym. To pokazuje, że nasz kwantowy przełom jest kompatybilny z obecnie używanymi technologiami. Wszystkie obecnie używane komputery wykorzystują systemy korekcji błędów i redundancji danych. Jednak prawa mechaniki kwantowej narzucają ścisłe ograniczenia na sposób korekcji błędów w maszynach kwantowych. Konieczne jest osiągnięcie odsetka błędów poniżej 1%. Dopiero wtedy można zastosować kwantowe protokoły korekcji błędów. Teraz, gdy udało się ten cel osiągnąć, możemy zacząć projektować skalowalne krzemowe procesory kwantowe, zdolne do przeprowadzania użytecznych wiarygodnych obliczeń, wyjaśnia Morello. « powrót do artykułu
  2. Zespół pod kierownictwem Stevena Girvina z Yale University stworzył pierwszy w historii elektroniczny procesor kwantowy. Zbudowany z nadprzewodnika chip pracuje z dwoma qubitami i jest w stanie przeprowadzać bardzo proste operacje. Podobne obliczenia kwantowe były dokonywane już wcześniej, ale po raz pierwszy udało się je przeprowadzić za pomocą urządzenia, które jest ciałem stałym, a więc przypomina współcześnie używane procesory. Każdy z qubitów jest złożony z około miliarda atomów glinu, jednak zachowują się one jak pojedynczy atom i mogą jednocześnie przybierać dwa różne stany energetyczne, a więc mamy do czynienia ze zjawiskiem superpozycji. Dotychczas nie udawało się przeprowadzić obliczeń kwantowych w ciele stałym, ponieważ kwantowe bity (qubity) błyskawicznie traciły swoje właściwości, stając się "zwykłymi" bitami. Pierwsze qubity, uzyskane 10 lat temu, wykazywały właściwości kwantowe przez nanosekundę. Teraz naukowcom udało się wydłużyć ten czas tysiąckrotnie, do mikrosekundy. To wystarczyło, by przeprowadzić proste operacje. Oba qubity komunikowały się ze sobą za pomocą fotonów przesyłanych poprzednio skonstruowanymi połączeniami. Uczonym udało się zmusić qubity, by wymieniały dane i robiły to tylko wtedy, gdy uczeni tego chcieli. Teraz naukowcy będą starali się wydłużyć czas, w którym qubity wykazują właściwości kwantowe. Jeśli im się to uda, będzie można dokonywać bardziej złożonych obliczeń. Akademicy chcą też zwiększyć liczbę wykorzystywanych qubitów, co znakomicie zwiększy wydajność obliczeniową całego systemu. Od powstania pierwszego kwantowego komputera dzieli nas jeszcze wiele lat, jednak właśnie jesteśmy świadkami dokonania olbrzymiego kroku naprzód.
×
×
  • Create New...