Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'poruszanie się' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 4 wyniki

  1. W rozwiązywaniu problemów bierze udział nie tylko nasz mózg, ale i całe ciało. Co ciekawe, nawet gdy zadanie dotyczy działań w przestrzeni, uniemożliwienie poruszania się prowadzi do wybrania innej strategii, która niejednokrotnie bywa skuteczniejsza od zawierającej elementy motoryczne. Prof. Martha Alibali i Robert C. Spencer z University of Wisconsin oraz Lucy Knox i Sotaro Kita z University of Birmingham przeprowadzili 2 eksperymenty. W pierwszym wzięło udział 86 amerykańskich studentów. Połowie za pomocą rzepów wczepionych w blat biurka unieruchomiono ręce, a pozostałym stopy (wykorzystano paski z rzepów mocowanych do innego blatu). Stojąc za nieprzezroczystym ekranem, psycholog zadawał pytania dotyczące związków między pięcioma kołami zębatymi, np. "Jeśli koła zębate są ustawione w rzędzie i poruszysz pierwszym w kierunku zgodnym z kierunkiem ruchu wskazówek zegara, co się stanie z ostatnią przekładnią?". Ochotnicy rozwiązywali zadania na głos, byli przy tym filmowani. Naukowcy analizowali liczbę gestów (obroty dłoni czy wskazujące na liczenie ruchy palców). Pod uwagę brano też wyjaśnienia sugerujące wyobrażanie sobie ruchów lub wykorzystanie abstrakcyjnych zasad matematycznych. Okazało się, że ludzie, którzy mogli poruszać rękoma, zazwyczaj to robili (stosowali więc strategie percepcyjno-motoryczne). Osoby z zapiętymi dłońmi lub ci, którzy nie poruszali nimi, mimo że mogli, częściej korzystali z dobrodziejstw czystej matematyki. W drugim eksperymencie wzięło udział 111 dorosłych Brytyjczyków. Tym razem zadanie należało rozwiązywać po cichu, jednak ochotników ponownie unieruchamiano za pomocą rzepów i filmowano. Po zakończeniu próby badani mieli opowiedzieć o zastosowanych strategiach. Okazało się, że znów osoby z zapiętymi dłońmi w większym stopniu korzystały z zasad matematyki, a ich koledzy i koleżanki, którzy mogli swobodnie gestykulować, polegali raczej na metodzie percepcyjno-ruchowej.
  2. Sposób poruszania się owadów czy gadów po pionowych powierzchniach od dawna interesuje naukowców, którzy chcieliby stworzyć urządzenia, poruszające się w ten sam sposób. Wiadomo, że zwierzęta przemieszczają się po różnych powierzchniach nachylonych pod różnymi kątami dlatego, że ich kończyny wyposażone są w miniaturowe włoski. James Bullock i Walter Federle z University of Cambridge są pierwszymi uczonymi, którym udało się zmierzyć siłę potrzebną do oderwania pojedynczego włoska od powierzchni. Uczeni badali żuki, u których włoski na nogach mają trzy różne kształty: z końcówkami w kształcie punktu, łopatki oraz dysku. Są one rozłożone na nogach w specyficzny wzór, co sugeruje różne funkcje. Średnica każdego z włosków wynosi zaledwie 1/200 milimetra, dlatego też dotychczas nikomu nie udało się zmierzyć właściwości pojedynczego włosa. Dopiero Bullock i Federle wpadli na pomysł, jak to zrobić. Do włosków przymocowali niewielkie wsporniki ze szkła i obserwując pod mikroskopem odkształcanie się szkła podczas ruchu żuka, szacowali działające siły. Badania wykazały, że najmocniej przyczepiają się do powierzchni włoski zakończone dyskiem, słabiej te, których końcówka przypomina łopatkę, a najsłabiej - zakończone punktowo. Dyski były też najbardziej sztywne, prawdopodobnie zapewniają stopie stabilność. Zdaniem Bullocka i Federle to właśnie włoski zakończone dyskami ogrywają zasadniczą rolę podczas poruszania się po gładkich powierzchniach. Samcom przydają się też do trzymania samicy podczas kompulacji. Uczeni spekulują, że dwa pozostałe typy włosków pozwalają na szybkie odrywanie stóp od powierzchni podczas marszu do góry nogami. Naukowcy mówią, że zanim nauczymy się naśladować naturę potrzeba jeszcze szeregu badań. Pytanie w jaki sposób siły pojedynczego włoska przekładają się na sposób poruszania się całego zwierzęcia to wciąż nierozwiązana kwestia. Jej zrozumienie jest konieczne do stworzenia sztucznych przylepców wzorowanych na systemach naturalnych - zauważają uczeni.
  3. Badania Tony'ego Russella, zoologa z University of Calgary, rzucają nieco światła na niezwykłe właściwości gekonów. Zwierzęta te, jak wiemy, potrafią poruszać się po najróżniejszych podłożach i wędrować po pionowych płaszczyznach. Naukowcy wiedzą, że jest to możliwe dzięki olbrzymiej liczbie mikroskopijnych włosków, pokrywających łapy gekona. Okazuje się również, że zwierzęta nie zawsze korzystają z "przylepnych" właściwości swoich łap. Russell postanowił dowiedzieć się, kiedy gekon porusza się jak inne zwierzęta, a kiedy zaczyna "przyklejać się" do powierzchni po której idzie. Uczony umieszczał zwierzęta na automatycznych bieżniach pokrytych albo śliskim pleksiglasem, albo szorstkim papierem. Okazało się, że nawet idąc po pleksiglasie gekony nie korzystały z możliwości "przyklejenia się", mimo iż wyraźnie łapy im się ślizgały. Niektóre zwierzęta zaczęły "kleić się" do podłoża wówczas, gdy nachylono je pod kątem 10 stopni. Gdy musiały iść pod kątem 30 stopni - wszystkie korzystały z "lepkich łap". Okazuje się zatem, że niezwykły mechanizm nie jest uruchamiany ze względu na rodzaj podłoża, ale decyduje o tym jego nachylenie. Odkrycie to zdziwiło naukowców. Gdybym była gekonem z pewnością zastanowiłabym się nad przyklejeniem się do śliskiego podłoża gdyby moje łapy się ślizgały, a za mną pędziłby drapieżnik - mówi biofizyk Kellar Autumn z Lewis & Clark College. Russell spekuluje, że być może gekony posiadają w uszach mechanizm, który informuje je, kiedy wykorzystanie "przylepca" i ryzykowanie tym samym uszkodzenia włosków jest opłacalne. Badania pokazują, jak niezwykłymi zwierzętami są gekony. Wcześniej naukowcy zabierali jaszczurki i węże na pokład samolotu, który, swobodnie spadając, umożliwia doświadczenie braku siły ciążenia. Większość zwierząt wpadała w panikę, próbując uczepić się czegokolwiek. Gekony natomiast zachowywał spokój i wyciągały łapy tak, jakby surfowały w przestworzach. Można więc przypuszczać, że odczuwają one grawitację w inny sposób, niż większość zwierząt. Badania nad gekonami cieszą specjalistów zajmujących się... robotami. Mają bowiem nadzieję, że od gekonów nauczą się, w jaki sposób skonstruować maszynę poruszającą się po różnego typu podłożach.
  4. W naturze nie ma rzeczy niepotrzebnych. Jeśli nam, ludziom, wydaje się, że coś jest tylko ozdobą, mylimy się... Doskonałym tego przykładem jest nurniczek wąsaty (Aethia pygmaea), niewielki ptak morski z rodziny alek. Jego wąsy z piór spełniają dokładnie tę samą funkcję, co wibryssy kota: pomagają mu odnaleźć drogę przez ciemne wykroty. Nurniczki wąsate zamieszkują Aleuty i Wyspy Kurylskie. Składają jaja w norach, do których prowadzą wąskie korytarze, w dodatku ptaki wchodzą tam i wychodzą jedynie nocą. Wg biologów, Aethia pygmaea są najbardziej przyozdobionym z 6 znanych gatunków nurniczków i jednym z dwóch prowadzących nocny tryb życia. Przypominające wąsy pióra wyrastają ponad i pod oczami i kierują się ku górze oraz na boki głowy. Sampath Seneviratne i Ian Jones z Memorial University w St John's przypuszczali, że pseudowibryssy to narząd dotykowy, który pomaga ptakom poruszać się w ciemnościach. Aby sprawdzić, czy tak jest w rzeczywistości, Seneviratne złapał w nocy 99 ptaków, które wchodziły lub wychodziły z nory na wyspie Buldir (Aleuty). Potem wpuszczono je do drewnianego labiryntu, którego struktura bardzo przypominała wygląd typowego gniazda nurniczków. Zachowanie ptaków śledzono dzięki wykorzystaniu kamery na podczerwień. Naukowiec patrzył, jak nurniczki unikały zderzenia z wystającymi elementami i liczył, ile razy uderzyły się w głowę. To ważne, ponieważ na wolności pokonują korytarze wydrążone w skale wulkanicznej. Każdy ptak trzykrotnie pokonywał labirynt. Raz ze schowanymi wąsopiórami, raz z zawiązanymi oczami i raz bez żadnej tego typu interwencji. Okazało się, że nurniczki ze związanymi piórami uderzały się niemal dwukrotnie częściej niż wtedy, gdy mogły się nimi bez przeszkód (i to dosłownie!) posługiwać. Jak widać, pióra te są doskonałym przystosowaniem do środowiska, w którym przyszło żyć nurniczkowi.
×
×
  • Dodaj nową pozycję...