Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'poli(dimetylosiloksan)'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 3 results

  1. Kurkumina ma zostać podstawą tanich wykrywaczy materiałów wybuchowych. Abhishek Kumar z University of Massachusetts, twórca zaskakującego rozwiązania, tłumaczy, że wystarczy nadać barwnikowi właściwości fluorescencyjne. Wtedy można się posłużyć spektroskopią fluorescencji. Gdy z kurkuminą zwiążą się np. cząsteczki trotylu (TNT), po oświetleniu zmienią się właściwości emitowanego przez nią światła. Amerykanie zaprezentowali wyniki swoich badań na konferencji Amerykańskiego Stowarzyszenia Fizyki. Jeśli mamy gram TNT i będziemy próbkować miliard cząsteczek powietrza z losowo wybranych części pokoju, znajdziemy 4 do 5 cząsteczek TNT – to przyczyna, dla której tak trudno wykryć trotyl. Amerykański Departament Stanu szacuje, że na świecie zagraża ludziom ok. 60-70 mln min lądowych. Potrzebujemy więc przenośnego, rozmieszczalnego w terenie wykrywacza. Powinien być tani, bardzo czuły i łatwy w obsłudze. Na to, że kurkuminę można wykorzystać w takim urządzeniu, zespół Kumara wpadł zupełnie przez przypadek. Naukowcy skupiali się bowiem na biologicznych zastosowaniach substancji i poszukiwali metod zwiększenia rozpuszczalności w wodzie. Wtedy pomyśleli o wykorzystaniu jej właściwości optycznych. Na początku przeprowadzono reakcję chemiczną, w wyniku której do kurkuminy przyłączono grupy boczne wiążące się preferencyjnie z cząsteczkami materiału wybuchowego. By zachodziło świecenie, kurkumina musi znajdować się w roztworze. Jeśli ciecz podda się odparowaniu, traci swoje właściwości fluorescencyjne. Amerykanie wpadli więc na pomysł, by wykorzystać poli(dimetylosiloksan), PDMS. Jest on gęsty i lepki w temperaturze pokojowej, dlatego zapobiega ewaporacji. Na szklaną płytkę naniesiono bardzo cienką warstwę PDMS. Później akademicy posłużyli się LED-ami, które włączano i po jakim czasie wyłączano. Film jarzył się na zielono, a w obecności materiałów wybuchowych światło stawało się przytłumione. Podczas testów filmy wykrywały stężenia materiałów wybuchowych rzędu 80 części na miliard. Do wykrywania min urządzenie musi być czulsze, trzeba zatem zmodyfikować grupy dołączone do kurkuminy. Naukowcy uważają, że wykorzystanie macierzy czujników reagujących na różniące się nieznacznie barwy światła pozwoli wykrywać całą gamę materiałów wybuchowych.
  2. Na Rice University powstał polimer, który wzmacnia się pod wpływem obciążenia. Wykazuje zatem właściwości podobne do kości czy mięśni, które ulegają wzmocnieniu wskutek regularnego używania. Odkrycia właściwości polimeru dokonał Bren Carey badając materiał stworzony w laboratorium profesora Pulickela Ajayana. Zadaniem Careya było sprawdzenie, jak poli(dimetylosiloksan) wzbogacony pionowo ułożonymi wielościennymi nanorurkami reaguje na wielokrotne obciążenia. Ku swojemu zdziwieniu odkrył, że nie dochodzi do zużycia materiału, ale do jego wzmocnienia. Młody magistrant poddał polimer próbie polegającej na ściskaniu go pięć razy w ciągu sekundy. Po ośmiu dobach i 3.500.000 ściśnięć okazało się, że polimer jest o 12% bardziej wytrzymały niż był przed badaniem. Naukowcy od dawna wiedzą, że pod wpływem deformacji metale mogą zwiększać swoją wytrzymałość wskutek zmian w ich strukturze krystalicznej. Dotychczas jednak polimery, zbudowane z długich łańcuchów, nie zachowywały się w ten sposób. Uczeni z Rice nie wiedzą jeszcze, dlaczego ich materiał stał się bardziej wytrzymały.
  3. Zespół uczonych z Columbia University zdał sobie sprawę, że jedna z używanych od paru lat technik może zostać wykorzystana do samoistnego tworzenia nanomechanizmów. Budowanie silników, kół zębatych czy przekładni w skali nano jest bardzo kosztowne i skomplikowane. Tymczasem, jak się okazuje, można wykorzystać do tego celu materiały, które zmieniają kształt pod wpływem temperatury. Zespół Xi Chena postanowił bliżej przyjrzeć się cienkim warstwom metalu naniesionym na polimer PDMS czyli poli(dimetylosiloksan). Naukowcy ogrzewali dysk z PDMS tak długo, aż się rozszerzył, a następnie nanieśli nań cienką warstwę miedzi. Później ochłodzili polimer. Okazało się, że podczas chłodzenia skurczył się on bardziej niż miedź, powodując powstanie ząbkowania w metalu. Dalsze schładzanie polimeru prowadziło do pogłębiania się "ząbków". Chen mówi, że, przynajmniej teoretycznie, tak długo jak warstwa metalu jest równomiernie nałożona, a polimer jest homogeniczny, ochładzanie będzie prowadziło do powstawania regularnego ząbkowania. Z kolei kontrolując grubość warstwy metalu możemy kontrolować ilość ząbków. W ten prosty sposób możemy tworzyć miniaturowe koła zębate. Później wystarczy dodać do całości utwardzacza, który zapobiegnie zmianom wielkości polimeru i wzmocni całość. Dotychczas uczeni wyprodukowali w ten sposób koła o średnicy od 6 do 25 milimetrów. Chen chce wkrótce rozpocząć eksperymenty w znacznie mniejszej skali. Podkreśla, że jego zespół nie powiedział jeszcze ostatniego słowa. Tworzenie pojedynczych kół zębatych nie jest szczególnie interesujące. Naukowiec uważa jednak, że siła nowej techniki polega na możliwości produkowania skomplikowanych zestawów kół zębatych o bardzo różnym kształcie. Wystarczy tylko precyzyjnie kontrolować proces kurczenia się dowolnie wybranej części polimeru.
×
×
  • Create New...