Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'natężenie' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 6 wyników

  1. Ćmy rolnice tasiemki (Noctua pronuba) są tak wyczulone na ultradźwięki polujących nietoperzy, że neurony w ich uchu reagują na ruch błony bębenkowej odpowiadający wielkości atomu. Biolodzy z Uniwersytetu w Bristolu tłumaczą, że gdyby błonę bębenkową przeskalować, by miała grubość ściany z cegieł, owad byłby w stanie wykryć przemieszczenie ścianki na grubość włosa. Brytyjczycy tłumaczą, że u motyli występuje narząd tympanalny, który stanowi rodzaj rezonatora pokrytego cienką błoną bębenkową. Znajdują się na niej skolopofory, zbudowane z trzech komórek - jednej nerwowej i dwóch okrywających. Podobnie jak w naszym uchu wewnętrznym, drgania są przekształcane w impulsy elektryczne. Wibracje można opisać za pomocą częstotliwości (jak szybko błona się porusza) oraz natężenia (jak bardzo się przemieszcza). Dotąd nie wiedziano jednak, które z właściwości dźwięku są przekładane na sygnał nerwowy. Zespół dr Hannah ter Hofstede spróbował więc jednocześnie monitorować aktywność neuronów ćmy i drgania błony bębenkowej w czasie podawania dźwięków o różnych częstotliwościach i natężeniu. Brytyjczycy zauważyli, że do pobudzenia komórek nerwowych wystarczyło przemieszczenie błony rzędu 140 pikometrów, co odpowiada wielkości niektórych atomów. Gdyby neurony po prostu wykrywały dźwięki, to drobne przesunięcie byłoby takie samo dla wszystkich częstotliwości, różniłaby się tylko prędkość wibracji. [W świetle uzyskanych wyników wygląda jednak na to], że neurony słuchowe są aktywowane przez niewielkie przemieszczenia błony bębenkowej, a nie częstotliwość jej drgań - tłumaczy dr Holger Goerlitz. Pewnym wyjątkiem są niskie dźwięki o częstotliwości poniżej 15 kHz, w przypadku których do pobudzenia neuronów dochodziło przy większych przemieszczeniach błony bębenkowej. Ćmy są głuche na niskie, nieszkodliwe dźwięki z tła [muszą być naprawdę głośne, by je odnotowały], co umożliwia im dokładniejsze dostrojenie do ważniejszych odgłosów: ultradźwięków wydawanych przez polujące na nie drapieżniki - podsumowuje dr Hannah ter Hofstede.
  2. Niektóre nietoperze mają o wiele większą kontrolę nad echolokacją niż wcześniej sądzono. Badania nad rudawką nilową (Rousettus aegyptiacus) wykazały, że ssaki te mogą m.in. manipulować szerokością wiązki dźwięków. Naukowcy porównują to do dostosowywania przez ludzi wielkości okienka uwagi. Rudawki nilowe żyją w złożonych i zróżnicowanych środowiskach: chronią się w jaskiniach, a ponieważ żywią się owocami, muszą się jakoś poruszać wśród gałęzi drzew. W ramach eksperymentu zespół Nachuma Ulanovsky'ego z Instytutu Nauki Weizmanna oraz Cynthii Moss z University of Maryland zauważył, że R. aegyptiacus dostosowują się do otoczenia, stosując dwie taktyki – wspomnianą na początku regulację szerokości wiązki wysokich dźwięków, a także modyfikację ich natężenia. Naukowcy nauczyli 5 rudawek nilowych wykrywania i lądowania na plastikowej sferze wielkości mango. Umieszczano ją w różnych miejscach dużego, ciemnego pomieszczenia, w którym zamontowano 20 mikrofonów. W jednym ze scenariuszy symulowano najeżony przeszkodami las. Dookoła niby-mango między 4 drążkami rozciągnięto dwie sieci. Nietoperze musiały przelecieć korytarzem, którego szerokość i ukształtowanie zmieniały się z próby na próbę. Badacze odkryli, że w obecności wielu przeszkód za pomocą podwójnych sonarowych pulsów ssaki obejmowały 3-krotnie większą powierzchnię niż w przypadku otwartego terenu. Oznacza to, że między pulsami można było wyznaczyć większy kąt. Dodatkowo rosło natężenie dźwięków. Naukowcy tłumaczą, że szersze pole widzenia pozwalało rudawkom śledzić położenie mango i drążków jednocześnie. Niewykluczone, że zjawisko to ogranicza się wyłącznie do R. aegyptiacus, które potrafią bardzo szybko poruszać językiem.
  3. Naukowcy z Los Alamos National Laboratory ustanowili nowy rekord natężenia pola magnetycznego uzyskanego za pomocą magnesów, które nie ulegają zniszczeniu podczas wytwarzania takiego pola. Najpierw, 18 sierpnia, osiągnęli natężenie rzędu 92,5 tesli, bijąc niemiecki rekord, który wynosił 91,4 tesli, a następnego dnia uzyskali na krótką chwilę pole o natężeniu 97,4 tesli. Możliwość uzyskania impulsów pola magnetycznego o niezwykle wysokim natężeniu pozwala na przeprowadzenie wielu istotnych eksperymentów z dziedziny materiałoznawstwa. Co prawda wcześniej uzyskiwano już znacznie większe natężenia pola magnetycznego, ale albo używano przy tym magnesów, które natychmiast ulegały zniszczeniu, albo też wykorzystywano materiały wybuchowe, co wykluczało prowadzenie innych eksperymentów. Teraz powstał system, który jest zdolny do wielokrotnego generowania pola o silnym natężeniu magnetycznym. Będzie on świetnym uzupełnieniem systemu magnesów z Florydy, które przez długi czas potrafią generować pole o natężeniu 25 tesli. Uczeni z Los Alamos myślą o przekroczeniu „magicznej" granicy 100 tesli, do osiągnięcia której od wielu lat dążą zespoły w Niemiec, Chin, Francji czy Japonii. Potężne pola magnetyczne pozwalają na „zajrzenie" w głąb materiałów i poznanie ich właściwości kwantowych. Multishot Magnet z Los Alamos zasilany jest przez generator o mocy 1,4 gigawata, a w jego zwojach płynie prąd o energii przekraczającej 100 megadżuli.
  4. Spoglądanie na własne ciało zmniejsza ból - twierdzą naukowcy z Uniwersyteckiego College'u Londyńskiego i Università degli Studi di Milano - Bicocca. Psycholodzy wykazali, że widok dłoni ogranicza ból odczuwany podczas dotykania skóry gorącymi obiektami. Co więcej, poziom bólu zależy od tego, na jak dużą wygląda ręka: im większa, tym większe jej działanie przeciwbólowe. Obraz ciała, jaki tworzy sobie mózg, ma silny wpływ na natężenie doświadczanego bólu - podkreśla główna autorka studium Flavia Mancini. Podczas eksperymentu 18 osobom na lewej dłoni umieszczano sondę ciepła. Jej temperaturę stopniowo podwyższano, a wolontariusze mieli nacisnąć stopą pedał, gdy tylko zaczną odczuwać ból. Brytyjsko-włoski zespół posłużył się układem luster, by manipulować tym, co badani widzą. Ludzie mieli zawsze spoglądać w lewo, ale ich oczom ukazywała się albo własna dłoń, albo umieszczony w jej miejscu drewniany obiekt. Okazało się, że zwykły widok własnej ręki zmniejszał poziom bólu. Próg bólowy podczas patrzenia na rękę był o ok. 3°C wyższy niż podczas patrzenia na inny obiekt. W kolejnym etapie eksperymentu naukowcy wykorzystali zwierciadła wklęsłe i wypukłe, by dłoń powiększyć lub pomniejszyć. Kiedy ręka wydawała się większa, badani tolerowali większe natężenie ciepła, nim stwierdzali, że odczuwają ból. Gdy dłoń wyglądała na mniejszą, ból zgłaszano przy niższych temperaturach, w porównaniu do sytuacji postrzegania jej w normalnych rozmiarach. Sugeruje to, że źródeł bólu należy poszukiwać w częściach mózgu odpowiadających za reprezentowanie rozmiarów ciała, a zabiegi akademików wpłynęły zapewne na przestrzenną mapę skóry.
  5. Szum tła oddziałuje zarówno na intensywność smaku, jak i na postrzeganie kruchości. To dlatego, wg naukowców, jedzenie w samolocie lub na statkach wydaje się często tak niesmaczne (Food Quality and Preference). Podczas dwóch eksperymentów 48 ochotnikom zawiązywano oczy i proszono o ocenę intensywności smaku (słodyczy i słoności), kruchości pokarmów, a także ich ogólnego smaku/stopnia, w jakim dana pozycja w menu im smakowała. W tym czasie przez słuchawki odtwarzano im szum biały o różnym natężeniu (głośny lub cichy) albo w pomieszczeniu panowała cisza. Okazało się, że głośniejsze dźwięki zmniejszały wrażenie słodyczy i słoności, zwiększając jednocześnie subiektywne wrażenie chrupkości. Badani kosztowali m.in. ciastek i chipsów. Zgodnie z obiegową opinią jedzenie w samolocie nie należy do fantastycznych. Jestem pewien, że linie lotnicze robią wszystko, co w ich mocy [by zapewnić najwyższą jakość obsługi], więc mając to na uwadze, zastanawialiśmy się, czy istnieją inne powody, dla których jedzenie nie miałoby być dobre. Pomyśleliśmy, że może chodzi o szum tła - opowiada dr Andy Woods, naukowiec pracujący w laboratoriach Unilevera i na Uniwersytecie w Manchesterze. Brytyjczyk wspomina też, że NASA wyposaża astronautów w dobrze przyprawione pokarmy o silnym smaku. Niewykluczone, że poza mikrograwitacją powodem jest właśnie szum tła. Ponieważ nikt wcześniej nie przeprowadzał badań na ten temat, podjął się ich jego zespół. Czemu przy głośniejszych dźwiękach pokarmy wydawały się mniej słone/słodkie i bardziej chrupiące? Dowody wskazują, że efekt można sprowadzić do tego, gdzie kieruje się nasza uwaga – jeśli szum tła jest stosunkowo głośny, może odciągać uwagę od jedzenia. Wyniki demonstrują, że szum tła inaczej wpływa na właściwości jedzenia niezwiązane z dźwiękiem (słodycz, słoność) i na te przekazywane za pośrednictwem słuchu (kruchość). Co ciekawe, ogólne zadowolenie z jedzenia pokrywało się ze stopniem, do jakiego ochotnikom podobało się szum biały. Zagadnienie to będzie badane w ramach przyszłych eksperymentów.
  6. Hałas dochodzący z lotniska zwiększa ciśnienie krwi podczas snu. Mieszkanie w pobliżu tego typu obiektów jest więc zdecydowanie niezdrowe i tym razem nie chodzi tu wyłącznie o higienę narządu słuchu. Im większe natężenie dźwięków, tym większy skok ciśnienia się odnotowuje. Dr Lars Jarup ostrzega w związku z tym przed chorobami serca. Wysokie ciśnienie krwi może prowadzić do udaru, zawału, niewydolności serca i nerek. Studium naukowców z Imperial College London zostało sfinansowane przez Komisję Europejską (European Heart Journal). Do tej pory naukowcom udało się wykazać, że ludzie żyjący przez co najmniej 5 lat w pobliżu ruchliwych lotnisk i pod trasami lotów z większym prawdopodobieństwem zaczynają cierpieć na nadciśnienie niż osoby mieszkające w spokojnej okolicy. Wcześniejsze badanie ok. 5000 ludzi unaoczniło, że zwiększenie natężenia nocnego hałasu lotniczego o 10 decybeli "windowało" szanse wystąpienia nadciśnienia u kobiet i mężczyzn o 14%. Jarup podkreśla, że wyniki są bardzo istotne, zwłaszcza gdy weźmie się pod uwagę plany powiększania międzynarodowych lotnisk. W najnowszym badaniu Brytyjczyków, które trwało 4 lata, zdalnie mierzono ciśnienie 140 ochotników, śpiących we własnych domach w pobliżu lotniska Heathrow. Czynność tę powtarzano co 15 minut. Nagrywano też wszystkie dźwięki, by stwierdzić, które z nich miały największy wpływ na ciśnienie. Wzięto pod uwagę nie tylko pomruk i gwizdy samolotów, ale także codzienne hałasy, takie jak chrapanie partnera czy ruch uliczny. Okazało się, że gdy natężenie dźwięku przekraczało 35 decybeli, następował wzrost ciśnienia skurczowego o 6,2 mm słupa rtęci i rozkurczowego o 7,4 mm. Wskazania ciśnieniomierza rosły bez względu na to, czy delikwenci budzili się, czy nadal spali. Decydującym czynnikiem było natężenie dźwięku, a nie jego źródło, ale samoloty zdecydowanie wiodły tu prym.
×
×
  • Dodaj nową pozycję...