Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'naczynie krwionośne'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 2 results

  1. Organ tak ważny, jak mózg, musi być należycie zabezpieczony. Naukowcy z Uniwersytetu Kalifornijskiego zaobserwowali na jego powierzchni sieć "zapasowych" naczyń krwionośnych, które w normalnych warunkach niemal nie przenoszą krwi, lecz w sytuacji zablokowania naturalnych dróg dopływu krwi natychmiast otwierają się, przywracając krążenie życiodajnego płynu. Poprzednie badania wykazały, że w reakcji na niedokrwienie mózgu dochodzi do spowolnienia przepływu krwi, mierzonego jako szybkość poruszania się pojedynczych komórek. Było to uznawane za zjawisko niekorzystne, osłabiające dopływ tlenu oraz leków. Teraz okazuje się, że efekt ten jest kompensowany przez zwiększenie średnicy naczyń, dzięki czemu rzeczywisty przepływ krwi (tzn. jej objętość docierająca w określone miejsce w jednostce czasu) pozostaje na bezpiecznym poziomie. Istnienie drugiej, "zapasowej" sieci naczyń krwionośnych znacznie zwiększa prawdopodobieństwo przeżycia udaru. Jak tłumaczy główny autor studium, prof. David Kleinfeld, przypomina to nieco funkcjonowanie sieci ulic w dużym mieście: ruch miejski spowalnia się znacznie słabiej niż mogłoby się wydawać, ponieważ w momencie, kiedy jedna z ulic zostaje zablokowana, można przenieść się na inną. Wygląda na to, że właśnie do tego dochodzi na powierzchni mózgu. Sekretem skuteczności odkrytego systemu jest jego organizacja, charakteryzująca się istnieniem licznych rozgałęzień i obejść. Umożliwia ona dotarcie krwi do określonego miejsca w mózgu nawet wtedy, gdy część "awaryjnego" obiegu krwi zostanie zablokowana. Pozwala to na minimalizację uszkodzeń, do jakich dochodzi podczas udaru mózgu. Średnica to główny czynnik determinujący sposób przepływu krwi przez naczynia. Otwórz delikatnie naczynie, a zaobserwujesz ogromną zmianę w ilości przepływającej przez nie krwi, tłumaczy dr Andy Shih, jeden z autorów odkrycia, i dodaje: przepływ krwi jest przywrócony, a wiele wskazuje na to, że te naczynia są bardzo odporne na [efekty] udaru. Funkcjonują całkiem normalnie.
  2. Funkcjonowanie naczyń krwionośnych wewnątrz guza nowotworowego jest najprawdopodobniej znacznie inne, niż dotychczas sądzono. Odkrycie może mieć istotny wpływ na skuteczność chemioterapii. Rozwój unaczynienia wewnątrz guza, zwany angiogenezą lub neowaskularyzacją, jest zależny od czynnika wzrostu śródbłonka naczyń (ang. vascular endothelial growth factor - VEGF). Stymuluje on wzrost naczyń i poprawia w ten sposób dostęp tlenu oraz substancji odżywczych do patologicznie zmienionej tkanki. Neutralizacja VEGF powinna zatem, zgodnie z obowiązującymi dotychczas hipotezami, powodować "zagłodzenie" nowotworu i jego stopniowe obumieranie. Najnowsze badania, wykonane w Moores Cancer Center należącym do Uniwersytetu Kalifornijskiego, przedstawiają angiogenezę w zupełnie nowym świetle. Ich zdaniem zablokowanie tego procesu nie powoduje odcięcia dopływu substancji odżywczych do wnętrza guza, lecz wręcz przeciwnie - poprawia go, gdyż spowolnienie rozwoju naczyń krwionośnych umożliwia im bardziej harmonijny i uporządkowany wzrost. Na szczęście oznacza to także, że ułatwiony zostaje w ten sposób transport leków do wnętrza guza. Szefem zespołu, który dokonał zaskakującego odkrycia, jest prof. David Cheresh. Badacze wyhodowali zmodyfikowane genetycznie myszy, u których zmniejszono poziom syntezy VEGF. Kolejnej grupie zwierząt, tym razem niemodyfikowanych, podawano leki wychwytujące VEGF i blokujących jego działanie. W obu przypadkach okazało się, że naczynia wewnątrz guza rosły prawidłowo, tzn. identycznie jak w zdrowej tkance. Jak tłumaczy prof. Cheresh, odkrycie pozwala na opracowanie lepszych terapii antynowotworowych: to oznacza, że chemioterapia mogłaby być podawana w odpowiednim czasie. Moglibysmy najpierw ustabilizować naczynia krwionośne, a następnie wkroczyć z lekami, by wyleczyć nowotwór. Podobne wnioski wypływają z innych badań, w których ograniczenie stężenia VEGF osiągnięto dzięki ograniczeniu aktywności produkujących go komórek. Naukowcy z Moores Cancer Center ustalili dokładny mechanizm omawianego zjawiska. Ich zdaniem nadmiar VEGF oraz pokrewnego białka, zwanego PDGF, blokują aktywność pericytów - komórek tworzących zewnętrzną osłonkę naczynia krwionośnego, nadających mu szczelność i odpowiednie właściwości mechaniczne. Oznacza to, że powstające bardzo szybko naczynia "nie nadążają" z wytwarzaniem pericytów, przez co ich struktura jest nieprawidłowa. Ponieważ zjawisko angiogenezy jest konieczne dla rozwoju niemal każdego rodzaju nowotworu (praktycznie jedynym wyjątkiem są nowotwory krwi), odkrycie może być bardzo istotne dla leczenia ogromnej rzeszy pacjentów. Zdaniem prof. Cheresha uzyskane informacje powinny wpłynąć na modyfikację niektórych schematów leczenia onkologicznego. Badacz twierdzi bowiem, że w obecnie często może dochodzić do sytuacji, w których podaje się pacjentom odpowiednio dobrany lek, lecz nieznajomość fizjologii guza może znacznie zmniejszać skuteczność leczenia. Wyniki badań zespołu z Uniwersytetu Kalifornijskiego opublikowało czasopismo Nature.
×
×
  • Create New...