Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'mięsień' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 8 wyników

  1. Po raz pierwszy wykazano, że otyłość bezpośrednio wywołuje elektryczne anomalie w pracy serca. Kardiolog i doktorant Hany Abed z Uniwersytetu w Adelajdzie podkreśla, że naukowcy dysponują coraz większą liczbą dowodów, że otyłość zmienia budowę, rozmiary serca, sposób, w jaki się ono kurczy, a także funkcję elektryczną mięśnia. Skutkiem tego ostatniego jest najczęstsze zaburzenie rytmu serca – migotanie przedsionków. Abed prowadzi badania, które mają ujawnić, jak otyłość wpływa na serce i czy spadek wagi może obniżyć ryzyko rozwoju migotania przedsionków. Wiemy już, że otyłość prowadzi do wzrostu ciśnienia i obciążenia serca. Najnowsze badania laboratoryjne na modelu owczym pokazują także, że otyłość wywołuje elektryczne nieprawidłowości w przedsionkach serca. Kardiolog z uniwersyteckiego Centrum Zaburzeń Rytmu Serca ujawnia, że w Australii częściej hospitalizuje się pacjentów z powodu migotania przedsionków niż niewydolności serca. Problem polega na tym, że migotanie przedsionków jest zazwyczaj wychwytywane przypadkowo: podczas kontroli lekarskiej lub gdy pojawiają się zawroty głowy, palpitacje serca czy bóle w klatce piersiowej. Niestety, często pierwszym objawem zaburzenia rytmu serca bywa dopiero udar. Abed ujawnia, że specjaliści z sektora medycznego szacują, że do 2020 r. aż 2/3 przypadków migotania przedsionków będzie można przypisać samej tylko otyłości. Naukowiec z antypodów wyjaśnia, że osoby najbardziej zagrożone migotaniem przedsionków – seniorzy – stają się coraz grubsze, przez co ryzyko rozwoju choroby serca jest u nich coraz wyższe.
  2. Nić pajęcza jest materiałem niezwykłym. Jest nie tylko pięć razy bardziej wytrzymała na rozciąganie od nici stalowej o tej samej masie, lecz dodatkowo jest bardziej elastyczna od gumy. Dzięki naukowcom z University of Akron dowiadujemy się o jeszcze jednej niezwykłej właściwości tego polimeru: zmienia on swoją długość pod wpływem zmian wilgotności powietrza, co oznacza, że może stać się materiałem do budowy sztucznych mięśni dla nanorobotów. Jak wspomina autor badań nad pajęczymi nićmi, prof. Ali Dhinojwala z Wydziału Nauk o Polimerach na University of Akron, kurczenie się i rozszerzanie nici pod wpływem zmian wilgotności zaobserwował jego kolega z Wydziału Biologii, prof. Todd Blackledge. Naukowcy z zespołu prof. Dhinojwali postanowili wykorzystać to zjawisko w praktyczny sposób i zbudowali prosty układ zdolny do podnoszenia ciężarów. Już podczas pierwszych obserwacji zauważono, że obniżenie wilgotności powietrza z 90% do 10% wystarcza, by nić o długości ok. 4 cm i średnicy 5,5 µm była w stanie podnieść w ciągu trzech sekund ciężarek ważący 9,5 mg na wysokość 0,65 mm. Co prawda oznacza to skrócenie się włókna zaledwie o 1,7%, lecz siła wytworzona w tym procesie, przekraczająca 50-krotnie siłe wytwarzaną przez ważące tyle samo włókno ludzkiego mięśnia, robi niemałe wrażenie. Zupełnie niesamowicie brzmi za to wielkość naprężeń, z jakimi radzi sobie skracająca się nić, wynosiły one bowiem aż... 40 megapaskali. Proces zaobserwowany przez prof. Blackledge'a można wielokrotnie powtarzać bez utraty siły skurczu. Niestety, kurczliwość włókien jest stanowczo zbyt mała, by były one użyteczne w obecnej formie. Naukowcy z University of Akron liczą jednak, że opracowanie metod splatania nici w większe sznury pozwoli na znaczącą poprawę tego parametru bez utraty pozostałych cennych właściwości niezwykłego materiału. Zdaniem prof. Dhinojwali udoskonalona wersja pajęczych sieci może mieć wiele zastosowań. Wśród przykładowych sposobów wykorzystania tego tworzywa badacz wymienia m.in. konstrukcję siłowników dla robotów i nanomaszyn, a także systemy dostarczania leków, zawory reagujące na wilgotność powietrza, a nawet... systemy wytwarzania energii. Co ważne, wynalazki te byłyby przyjazne dla środowiska i wydajne energetycznie, co czyni je bardzo atrakcyjnymi z punktu widzenia wielu gałęzi przemysłu. Ze względu na prawa autorskie zdjęcia układu stworzonego przez zespół z Akron są dostępne pod tym adresem.
  3. Od pewnego czasu wiadomo, że długotrwałe stosowanie statyn - leków blokujących enzym kluczowy dla syntezy cholesterolu w organizmie - może powodować uszkodzenie mięśni. Teraz, dzięki badaniom przeprowadzonym przez naukowców z Uniwersytetu Tuft's z Bostonu oraz Uniwersytetu w Bernie, okazuje się, że to szkodliwe zjawisko można bardzo łatwo przeoczyć. Ból mięśni jest jednym z pospolitych objawów ubocznych towarzyszących stosowaniu statyn. Dopiero po pewnym czasie zaobserwowano, że objaw ten nie oznacza wyłącznie dyskomfortu, gdyż w organizmach pacjentów często dochodzi także do niszczenia komórek mięśniowych. Dotychczas wydawało się, że prostym sposobem na wykrycie uszkodzeń jest badanie poziomu tzw. kinazy kreatynowej we krwi. Enzym ten występuje naturalnie głównie wewnątrz komórek mięśniowych, co oznacza, że wzrost jego stężenia we krwi niemal jednoznacznie świadczy o uszkodzeniu mięśni. Niestety, jak się okazuje, w przypadku stosowania statyn ilość kinazy kreatynowej we krwi może utrzymywać się w normie nawet wtedy, gdy komórki mięśni zostały uszkodzone. Odkrycia dokonano dzięki biopsji tkanki mięśniowej wykonanej u 83 pacjentów, spośród których 44 cierpiało na przewlekłe bóle mięśni towarzyszące przyjmowaniu statyn. Analiza mikroskopowa pobranego materiału wykazała, że aż w 25 przypadkach komórki wyizolowane z mięśni nosiły wyraźne ślady uszkodzeń. Jeszcze bardziej niepokojący jest fakt, iż u części chorych, u których stwierdzono ten szkodliwy objaw, poziom kinazy kreatynowej nie przekraczał normy. Może to oznaczać, że u niektórych osób przyjmujących statyny może dochodzić do stopniowej degeneracji mięśni, która może pozostać niewykryta pomimo wykonywania regularnych testów laboratoryjnych. Nieco pocieszający jest fakt, iż poważna degeneracja mięśni wywołana przyjmowaniem statyn zdarza się bardzo rzadko, zaś odstawienie leków pozwala zwykle na naprawę tkanki. Warto mieć jednak świadomość, że dla pacjenta leczonego środkami z tej grupy nawet korzystne wyniki badań nie dają gwarancji, iż w jego organizmie wszystko funkcjonuje jak należy.
  4. Zastąpienie jednego z białek budujących mięśnie szkieletowe jego odpowiednikiem występującym w sercu pozwala na zachowanie funkcji motorycznych organizmu - udowadniają australijscy badacze. Wywołanie analogicznego efektu w organizmie człowieka może uratować osoby cierpiące na poważne zaburzenia funkcji mięśni. Obiektem studium, prowadzonego przez zespół pod kierownictwem dr Kristen Nowak, były białka z rodziny aktyn. Proteiny te, kluczowe dla funkcjonowania mięśni, występują w organizmie w kilku różnych wariantach. Jeden z nich, zwany sercowym, w czasie życia płodowego występuje we wszystkich mięśniach szkieletowych oraz w mięśniu sercowym. Pod koniec ciąży zanika on jednak niemal zupełnie i pozostaje obecny wyłącznie w sercu. Zamiast niego, mięśnie szkieletowe zaczynają syntetyzować inny rodzaj aktyny, zwany szkieletowym. Jeżeli w komórkach dojrzewającego płodu dojdzie do mutacji genu kodującego aktynę "szkieletową", zwanego ACTA1, u rodzącego się dziecka można się spodziewać poważnych zaburzeń, prowadzących ostatecznie do śmierci w ciągu kilku pierwszych miesięcy życia. Badacze zaczęli w związku z tym zastanawiać się, czy zachowanie aktywności genu kodującego aktynę "sercową", noszącego nazwę ACTC, mogłoby zapobiec schorzeniom. Eksperyment zaproponowany przez dr Nowak wydawał się z góry skazany na niepowodzenie. Od dawna wiadomo bowiem, że przejście z ekspresji genu ACTA1 na ACTC zachodzi w organizmach wszystkich owodniowców. Zgodnie z teorią ewolucji sugerowało to, że jest to cecha korzystna i jej zachowanie świadczy o ważności tego procesu. Okazało się jednak, że jest zupełnie inaczej. Na potrzeby eksperymentu skrzyżowano myszy niewytwarzające aktyny "szkieletowej" z osobnikami zmodyfikowanymi genetycznie syntetyzującymi ludzką wersję aktyny "sercowej" zarówno w typowym miejscu jej występowania, jak i w mięśniach szkieletowych. Skrzyżowane gryzonie nie tylko nie ginęły po paru dniach od urodzenia, jak działo się w przypadku osobników o nieaktywnym genie kodującym aktynę "mięśniową", lecz także zachowywały sprawność fizyczną na poziomie porównywalnym ze zwierzętami zdrowymi. I choć pojedyncze włókna mięśni szkieletowych były u zwierząt skrzyżowanych nieznacznie słabsze, szybkość i wytrzymałość takich myszy była nawet lepsza, niż u osobników zdrowych. Zrozumienie procesu "przełączania się" mięśni z wykorzystywania jednego typu aktyny na drugi ułatwi badania nad ciężkimi chorobami dotykającymi noworodki. Co więcej, eksperyment przeprowadzony przez zespół dr Nowak pozwoli na opracowanie mysiego modelu tych schorzeń, dzięki czemu zdobywanie wiedzy na ich temat będzie znacznie prostsze.
  5. Wyrażenie woda życia zyskało nowe znaczenie, gdy okazało się, że po wypiciu roztworu trójpirofosforanu mioinozytolu (ang. myo-inositol trispyrophosphate, ITPP) czerwone krwinki myszy po przebytym zawale serca były w stanie uwalniać do uszkodzonego mięśnia więcej tlenu. Dla osób z chorobami sercowo-naczyniowymi oznacza to szansę na zmianę trybu życia (Proceedings of the National Academy of Sciences). Jean-Marie Lehn i zespół z Uniwersytetu w Strasburgu zauważyli, że po podaniu ITPP w postaci wodnego roztworu aktywność fizyczna myszy wzrosła o 35%, a po zastrzyku aż o 60%. ITPP nie dostarcza samego tlenu, lecz umożliwia hemoglobinie uwalnianie większych ilości O2 do tkanek. W normalnych warunkach hemoglobina "wypuszcza" tylko 25% swojego tlenowego ładunku, a po związaniu z trójpirofosforanem mioinozytolu uwalnia o 35% więcej życiodajnego gazu. Dzieje się tak, mimo że sama akcja oddechowa pacjenta nie ulega zmianie. W ciągu 3 dni nastąpił też 5-krotny spadek stężenia czynnika transkrypcyjnego indukowanego niedotlenieniem, czyli hipoksją (ang. hypoxia-inducible factor, HIF). Jest on wytwarzany przez niedotlenione tkanki. Co ważne, okazało się, że efekty podania ITPP utrzymują się przez co najmniej tydzień. Oznacza to, że leku nie trzeba by było zażywać codziennie. ITPP bardzo przypomina mioinozytol - substancję wytwarzaną naturalnie w organizmie i występującą w niektórych pokarmach, np. ryżu. Wątpliwe, by ITPP mógł zostać wykorzystany przez stosujących doping sportowców, ponieważ bardzo łatwo go wykryć.
  6. Czy kofeina spożywana po wysiłku pomaga zregenerować energię? Australijscy naukowcy zadali sobie to pytanie i mają dla nas dobrą wiadomość: to działa! Badacze z antypodów sprawdzali, czy podstawowy alkaloid zawarty w kawie przyśpiesza odnawianie zapasów glikogenu - złożonego węglowodanu stanowiącego rezerwę energetyczną m.in. dla mięśni. Efektywne odtworzenie odpowiedniej ilości tego związku jest kluczowe dla przygotowania mięśni do długotrwałego wysiłku. Podczas wielodniowych wyścigów, takich jak morderczy Tour de France, optymalizacja tego procesu może decydować o zwycięstwie bądź klęsce. Sportowcy uprawiający dyscypliny wytrzymałościowe często muszą szybko odtworzyć zapasy glikogenu w mięśniach pomiędzy kolejnymi sesjami treningowymi. W efekcie prowadzono wiele badań nad dietą ułatwiającą przyśpieszenie odzyskiwania energii i zwiększanie zapasów glikogenu w mięśniach, tłumaczy John Hawley z uniwersytetu RMIT w australijskiej Bundoorze, główny autor studium. Liczne wcześniejsze badania wykazały, że kofeina przyjmowana przez sportowców przed wysiłkiem lub w jego trakcie zwiększa dostępność glukozy, podstawowego paliwa dla mięśni i jednocześnie substratu do syntezy glikogenu. Jako "króliki doświadczalne" posłużyli Australijczykowi kolarze i triatloniści trenujący średnio przez 12-15 godzin w tygodniu. Podczas wieczornej części testów ochotnicy jechali na rowerach aż do zupełnego wycieńczenia, po czym pozwolono im jedynie na niewielki posiłek ubogi w węglowodany. Następnego poranka powtórzono trening, ponownie doprowadzając sportowców do wyczerpania. Dawało to pewność, że zapasy glikogenu zostały całkowicie wyczerpane. Po zakończeniu treningu uczestnicy mieli cztery godziny na regenerację. Otrzymali w tym celu złożony z batoników oraz żeli i napojów energetyzujących posiłek, zawierający 4g cukrów na kilogram masy ciała. Po zakończeniu posiłku zmierzono ilość glikogenu zgromadzonego w ich mięśniach. Gdy zawodnicy wrócili do pełni sił, eksperyment powtórzono. Tym razem podczas posiłku dodano jednak do ich napojów kofeinę w ilości 8mg na każdy kilogram masy ciała. Wyniki eksperymentu robią wrażenie: tempo odtwarzania rezerw energetycznych mięśni wzrosło aż o 60% w porównaniu do poprzedniej sesji, gdy przyjmowano same cukry. Nie ma absolutnie żadnej wątpliwości, że dodatkowa ilość glikogenu mięśniach poprawiłaby osiągi, komentuje krótko Hawley. Dodatkowe testy pokazały, że pod wpływem kofeiny we krwi ochotników wzrósł poziom glukozy oraz insuliny, ułatwiającej wykorzystanie energii przez mięśnie. Sugeruje to, że solidna kawa powinna istotnie wpływać na wydolność sportowców uprawiających praktycznie każdą dyscyplinę. Uzyskane wyniki wydają się bardzo zachęcające, lecz warto traktować je z rezerwą. Należy wziąć pod uwagę fakt, iż zawodnicy otrzymali ogromną dawkę kofeiny, odpowiadającą kilku kubkom mocnej kawy wypitym w czasie czterech godzin. Tak ogromna porcja alkaloidu mogłaby na dłuższą metę znacznie zaszkodzić, powodując m.in. bezsenność i drgawki. Jak tłumaczy Hawley, dawka, której użyliśmy, jest zbyt wysoka, by była stosowana przez sportowców. Dlatego musimy teraz wykonać krok wstecz i wykonać studium reakcji na różne dawki [kofeiny].
  7. Statyny, leki używane głównie do regulowania poziomu cholesterolu we krwi, mogą upośledzać regenerację mięśni. O odkryciu informuje Amerykańskie Stowarzyszenie Fizjologiczne. Leki z grupy statyn są najskuteczniejszymi znanymi farmaceutykami obniżającymi poziom "złego cholesterolu" (mówiąc dokładniej: kompleksów białkowo-lipidowych zwanych LDL), odpowiedzialnego m.in. za rozwój miażdżycy. Ich stosowanie zmniejsza ryzyko poważnych zaburzeń naczyniowych (m.in. zawału serca) aż o 60%, zaś prawdopodobieństwo udaru mózgu spada pod ich wpływem o 17%. Powodują one jednak efekty uboczne, spośród których najważniejsze to zmęczenie i ból. Intensywnosć obu tych symptomów może być znacznie zmniejszona dzięki aktywności fizycznej, lecz, jak pokazują najnowsze badania, uszkodzone mięśnie mogą regenerować się znacznie wolniej, gdy pacjent jest pod wpływem statyn. Odkrycia dokonali badacze z University of Alabama. Naukowcy hodowali tzw. komórki satelitarne (ang. satellite cells - SC), których główną rolą jest uzupełnianie ubytków powstających w wyniku obumierania komórek mieśni szkieletowych. Proces ten zachodzi dzięki podziałowi komórkowemu, w wyniku którego jedna z komórek potomnych nabiera cech komórki mięśniowej, zaś druga zachowuje status SC. Badacze z amerykańskiej uczelni badali podatność komórek satelitarnych na simwastatynę - jeden z najczęściej stosowanych środków z tej grupy. Wykazano, że podwyższone dawki preparatu, odpowiadające tym stosowanym u pacjentów wymagających średnio intensywnego leczenia, zmniejszają zdolność SC do podziału. Może to utrudniać odtworzenie prawidłowej struktury mięśni, upośledzając tym samym ich funkcjonowanie. Eksperci zaobserwowali ścisłą zależność pomiędzy dawką leku i ograniczeniem zdolności SC do podziału. Zaobserwowano na przykład, że ich aktywność zmniejsza się aż o połowę, gdy poddaje się je ekspozycji na lek o stężeniu symulującym średnio intensywną farmakoterapię. Biorąc pod uwagę długotrwałe stosowanie preparatu, może to mieć istotny wpływ na kondycję mięśni i ogólną sprawność fizyczną. Prowadząca badania dr Anna Thalacker-Mercer uważa, że z uwagi na dobro pacjentów należy przeprowadzić dalsze badania nad statynami. Dodaje, że warto sprawdzić jakie efekty wywołuje wieloletnie stosowanie tych leków: jesteśmy bardzo zainteresowani efektami u ludzi starszych. Istnieje możliwość, że osoby starsze mogą nie być zdolne do rozróżnienia bólu mięśni spowodowanego podawaniem statyn lub starzeniem, przez co efekty uboczne [stosowania] statyn mogą nie być zgłaszane dostatecznie często. W związku z tym naszym kolejnym krokiem będzie przebadanie [wpływu] statyn na osoby starsze.
  8. Dzięki zastosowaniu endoskopu wyposażonego w głowicę wielkości igły, badaczom z Uniwersytetu Stanforda udało się zajrzeć do wnętrza pracującego mięśnia i zaobserwować jego pracę. Procedura jest nie tylko precyzyjna, lecz także charkateryzuje się niewielką inwazyjnością w porównaniu do stosowanych dotychczas metod. Opracowane przez Amerykanów urządzenie pozwala na obserwację pojedynczych sarkomerów - kurczliwych jednostek wewnątrz komórek mięśnia, składających się z kilku rodzajów białka. Pojedyncza komórka mięśniowa może zawierać nawet kilkaset tysięcy tych stuktur, których długość wynosi kilka mikrometrów (milionowych części metra). Możliwość obserwacji pracy muskułów w tak doskonałym zbliżeniu wspomoże diagnostykę niektórych chorób układu mięśniowo-szkieletowego i pozwoli wielu pacjentom na uniknięcie bolesnej i wyjątkowo nieprzyjemnej biopsji, czyli pobrania fragmentów tkanki do badań. Nowatorska maszyna powstała w ramach funkcjonującego na Uniwersytecie Stanforda programu Bio-X. Celem tej inicjatywy, powołanej do życia dziesięć lat temu, jest integracja wysiłków badaczy zajmujących się różnymi działami nauki w celu opracowania rozwiązań mających zastosowanie w biologii i medycynie. Jednym z dokonań zespołu pracującego w ramach Bio-X jest stworzenie mikroskopijnej sondy, wbijanej przez skórę i umieszczanej wewnątrz mięśnia. Dzięki zainstalowanemu laserowi wysyła ona światło, a następnie, dzięki analizie odbitej fali, tworzy pojedynczą "klatkę" obrazu. Wykonanie serii takich zdjęć pozwala na obserwację pracy sarkomeru in vivo. Co więcej, możliwe jest oglądanie tego obrazu w czasie rzeczywistym. Na tym nie koniec, gdyż odpowiednia regulacja głębi ostrości obrazu pozwala na uzyskanie obrazu trójwymiarowego. Stworzone urządzenie może być używane na wiele sposobów. Pozwoli ono na analizę wielu procesów, których zrozumienie było znacznie utrudnione, gdy jedynym materiałem do badań była "martwa" próbka pobrana dzięki biopsji. Autor maszyny, Scott Delp, widzi zastosowanie swojego dzieła m.in. w diagnostyce uszkodzeń mięśni związanych z urazami rdzenia kręgowego i udarem mózgu, a także niektórych schorzeń związanych bezpośrednio z nieprawidłową pracą muskułów. Wśród innych potencjalnych zastosowań nowatorskiego endoskopu wymienia się m.in. badania z zakresu biomechaniki i konstrukcji różnego rodzaju protez. Możliwe będzie także jego użycie podczas zabiegów transplantacji ścięgien, wymagających ogromnej precyzji niezbędnej dla prawidłowego funkcjonowania przyłączonych do nich mięśni. Jak tłumaczy Scott Delp, jeżeli zmierzysz podczas zabiegu długość sarkomerów, możesz ustawić je tak, by pracowały przy swojej optymalnej długości. Umożliwia to osiągnięcie pełnej siły mięśni. O odkryciu donosi serwis internetowy czasopisma Nature.
×
×
  • Dodaj nową pozycję...