Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'klej' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 13 wyników

  1. Jak załatać mikropęknięcia w betonie? Nie jest to łatwe ani tanie, tym ważniejsze wydaje się więc nowatorskie rozwiązanie zaproponowane przez zespół studentów z Newcastle University – zmodyfikowane genetycznie bakterie, które produkują w takich razach coś na kształt kleju. Kiedy dojdzie do uszkodzenia, mikroby migrują na sam dół szczeliny. Gdy już się tam znajdą, wytwarzają mieszaninę węglanu wapnia oraz kleju bakteryjnego. Wszystko to łączy się w całość z koloniami komórek bakteryjnych (filamentami), tak że ostateczna wytrzymałość miniłaty jest taka sama jak otaczającego materiału. Wg wynalazców i ich opiekunki dr Jennifer Hallinan, BacillaFilla, bo taką nazwę nadano niby-klejowi, jest doskonałym rozwiązaniem w przypadku remontów/napraw struktur, których budowa była bardzo kosztowna dla środowiska. Około 5% związanej z działalnością człowieka emisji dwutlenku węgla pochodzi z produkcji betonu, czyniąc z niego jeden z głównych elementów przyczyniających się do globalnego ocieplenia. Sensowne wydaje się zatem zabieganie o przedłużenie przydatności już raz wyprodukowanego betonu. Zaprezentowana na organizowanym przez MIT międzynarodowym konkursie naukowym International Genetically Engineered Machines (iGEM) metoda będzie nieoceniona w strefach trzęsień ziemi, gdzie przy obecnie dostępnych technologiach wiele budynków trzeba po prostu wyburzać. Młodzi naukowcy nie tylko oceniali użyteczność zmodyfikowanych bakterii, ale i potencjalne zagrożenia środowiskowe. Okazało się, że spory BacillaFilla zaczynają kiełkować tylko w kontakcie z betonem – germinację wyzwala specyficzne pH materiału. Poza tym wbudowano w nie gen samozniszczenia, który uniemożliwia przeżycie w innym środowisku. Po wykiełkowaniu bakterie udają się do strefy pęknięcia. Wskutek zbijania się w masę wyczuwają, kiedy znajdą się na dnie. Nagromadzenie aktywuje proces naprawczy. Komórki różnicują się w 3 typy: 1) komórki produkujące kryształy węglanu wapnia, 2) komórki tworzące filament (zostają one połączone specjalnymi porami, które umożliwiają silniejsze związanie i polepszają transport) oraz 3) komórki wytwarzające klej Levansa.
  2. Setki lat po upadku wielkich cywilizacji Mezoameryki, poznajemy nowe fakty świadczące o olbrzymiej wiedzy i sprawności tamtejszych ludów. Tym razem dotyczą one... produkcji gumy. Jednym z nowych przedmiotów, z którymi w XVI wieku zetknęli się Hiszpanie, były gumowe piłki wykorzystywane w ceremoniach religijnych. W Europie nie znano wówczas tak elastycznego i wytrzymałego materiału. Teraz badania przeprowadzone przez Massachusetts Institute of Technology pokazały, jak zaawansowane było przetwórstwo kauczuku w prekolumbijskiej Ameryce. Okazuje się bowiem, że tamtejsze ludy nie tylko potrafiły zbierać i formować kauczuk, ale nadawały mu też pożądane właściwości. Materiał na podeszwy butów był twardy i odporny na ścieranie, ale już do produkcji piłek wzbogacano go chemicznie tak, by piłki jak najlepiej się odbijały. Guma była używana też w budownictwie jako klej. Wówczas producenci dbali, by dobrze się kleiła i była odporna na działanie czynników zewnętrznych. Jak uważają profesor Dorothy Hosler i technik Michael Tarkanian, właściwości gumy zmieniano manipulując proporcjami kauczuku i soku z wilców. Dopiero w 1999 roku uczeni odkryli, że ludy Mezoameryki mogli mieszać te dwa składniki podczas produkcji gumy. Teraz, dzięki laboratoryjnym eksperymentom, badaniu zabytków oraz opisom pozostawionym przez pierwszych podróżników i konkwistadorów, naukowcy dowiedzieli się, w jaki sposób uzyskiwano produkt o potrzebnych właściwościach. Przeprowadzenie odpowiednich dowodów nie było proste. Archeolodzy znaleźli ceremonialne piłki, jednak nie dysponujemy sandałami, w których chodziły ludy podbite przez Hiszpanów. Ponadto znalezione piłki nie nadają się do tego, by zbadać ich właściwości mechaniczne. Dlatego też uczeni musieli mozolnie odtwarzać receptury, korzystając przy tym z lokalnych składników występujących w Meksyku. W ten sposób dowiedzieli się, że optymalny materiał na piłki zawierał 50% kauczuku i 50% soku z wilca. Guma używana jako klej była w całości wykonana z kauczku, a sandały to trzy części kauczuku na jedną część soku. Wszystko zatem wskazuje na to, że pan Charles Goodyear wcale nie był twórcą procesu wulkanizacji. O setki lat wyprzedzili go Majowie, Aztekowie czy Olmekowie. John McCloy, badacz z Pacific Northwest National Laboratory stwierdził: "Tarkanian i Hosler pokazali, że ludy Mezoameryki byli pierwszymi, które badały właściwości polimerów i były w stanie sprawować kontrolę nad mechanicznymi właściwościami gumy".
  3. Nowy rodzaj biokompatybilnego polimeru może już niedługo posłużyć do zaklejania otworów powstających w błonach płodowych np. w wyniku błędu lekarskiego - udowadnia międzynarodowy zespół kierowany przez dr Grozdanę Bilic ze Szpitala Uniwersyteckiego w Zurychu. Z porównania kilku mieszanek wynika, że najlepsze wyniki daje zastosowanie kleju naśladującego... wydzielinę omułków jadalnych. Autorzy studium porównali ze sobą sześć substancji: dwa rodzaje tzw. cyjanoakrylanowych klejów tkankowych, jeden preparat zawierający fibrynę (naturalne białko stanowiące główny składnik skrzepu) oraz trzy rodzaje eksperymentalnych mieszanek opartych na glikolu polietylenowym z domieszkami. Przeprowadzony eksperyment miał dwa zasadnicze cele. Najważniejszym z ocenianych parametrów była ocena zdolności badanych substancji do zaklejania otworów w warstwie komórek błon płodowych hodowanych in vitro. Badacze chcieli także wiedzieć, czy kontakt z którymkolwiek klejem wywoła reakcje toksyczne. Po zakończeniu eksperymentu okazało się, że żadna z badanych substancji nie wywołuje u eksponowanych na nią komórek niekorzystnych reakcji. Jeśli zaś chodzi o skuteczność w zaklejaniu uszkodzeń, zdecydowanie najskuteczniejszym preparatem okazała się mieszanka zawierająca glikol polietylenowy oraz aminokwas DOPA (dihydroksyfenyloalaninę), zawarty w znacznej ilości w kleju wytwarzanym w naturze przez omułki jadalne (Mytilus edulis). Substancja ta, służąca mięczakom do przytwierdzania się do podłoża, radziła sobie nawet z zaklejaniem otworów o średnicy 3,5 mm, zaś uzyskana z niej spoina zachowywała szczelność nawet podczas rozciągania. Wyniki przeprowadzonych testów będa musiały, oczywiście, zostać potwierdzone w testach na zwierzętach. Od ich rezultatów będzie zależało ewentualne rozpoczęcie prób nowego środka w warunkach klinicznych.
  4. Zdolność pąkli do przywierania do różnego rodzaju powierzchni od dawna intrygowała badaczy. Po wielu latach badań, gdy wreszcie udało się zidentyfikować mechanizm odpowiedzialny za ten proces, okazuje się, że jest on niezwykle podobny do zjawiska zachodzącego... także w organizmie człowieka. Badaniem niezwykle silnego kleju wytwarzanego przez morskie skorupiaki zajął się Gary Dickinson, naukowiec pracujący dla Duke University. Od samego początku nie było mu łatwo, bowiem wydzielina pąkli błyskawicznie zastyga. Aby nieco spowolnić ten proces, kleisty płyn pobierano w chłodni, lecz nawet wtedy krzepnięcie bogatego w białka kleju następowało po zaledwie pięciu minutach. Ważnym etapem eksperymentu była identyfikacja poszczególnych białek zawartych w wydzielinie. Jak się okazało, jedno z nich posiada aktywność proteazy serynowej, czyli białka zdolnego do rozcinania cząsteczek innych protein w ściśle określony sposób. Co ciekawe, białka o bardzo podobnej charakterystyce są kluczowe (także u ludzi) dla aktywacji enzymatycznej kaskady odpowiedzialnej za krzepnięcie krwi. Próbki spolimeryzowanej wydzieliny poddano także analizie z wykorzystaniem mikroskopu sił atomowych - niezwykle precyzyjnej metody analitycznej. Wykazała ona, że krzepnięcie kleju polega na powstaniu gęstej sieci skrzyżowanych ze sobą łańcuchów białkowych, przypominających do złudzenia skrzep powstający z krwi. Największym zaskoczeniem dla autora eksperymentu było jednak badanie samej proteazy wytwarzanej przez pąkle. Dzięki badaniom z wykorzystaniem spektroskopii masowej oraz sekwencjonowania białek okazało się, że wykazuje ona łudzące podobieństwo do czynnika XIII, jednego z białek biorących udział w procesie krzepnięcia krwi. Wszystko wskazuje więc na to, że zastyganie kleju wytwarzanego przez pąkle mogło wyewoluować jako specyficzna forma leczenia ran. Dopiero z biegiem ewolucji dla kleistej wydzieliny znalazło się także inne zastosowanie, czyli przytwierdzanie zwierzęcia do różnego rodzaju powierzchni. Zebrana wiedza może pomóc nie tylko chemikom pracującym nad coraz lepszymi i silniejszymi klejami, lecz także... armatorom i przewoźnikom. Przytwierdzanie się pąkli do dna statków może bowiem zwiększać zużycie paliwa nawet o 25%. Usunięcie nieproszonych gości mogłoby więc znacząco ograniczyć koszty transportu morskiego.
  5. Bakterie wytwarzające hydroksyapatyt (HA) można wykorzystać do uzyskania bardziej wytrzymałych implantów kości. Nową metodę opracowała profesor Lynne Macaskie z University of Birmingham. Podczas badań okazało się, że bakterie z rodzaju Serratia ściśle przylegają do różnych powierzchni, m.in. stopów tytanu, polipropylenu, porowatego szkła i pianki poliuretanowej, ponieważ tworzą biofilm zawierający biopolimery działające jak klej. Na tej warstwie tworzy się następnie powłoka z hydroksyapatytu. Aby dało się to wykorzystać w praktyce, warstwa HA musi ściśle przylegać. Materiał jest zatem suszony i podgrzewany (ma to zabić niepotrzebne już bakterie). Mikromanipulacyjna technika, którą wykorzystano do zmierzenia sił potrzebnych do rozerwania biokleju, wykazała, że by zniszczyć wysuszoną jego wersję, trzeba ciągnąć 20-krotnie mocniej niż w przypadku wersji świeżej. Po pokryciu hydroksyapatytem przyleganie stało się jeszcze kilkukrotnie silniejsze. Efektywność kleju zwiększała się, gdy powierzchnia nie była gładka, lecz lekko szorstka. Obecnie implanty kości uzyskuje się przez "nasprejowanie" hydroksyapatytu. Nie mogą się one jednak pochwalić dobrą wytrzymałością mechaniczną, poza tym sprej sięga tylko do widocznych obszarów. Z bakteriami nie ma tego problemu, bo dotrą wszędzie. Co więcej, bakteryjny HA ma lepsze właściwości niż minerał uzyskany chemicznie. Dzieje się tak, gdyż nanokryształy tego pierwszego są o wiele mniejsze i to właśnie to zapewnia im większą wytrzymałość. Bakterie są niszczone przez podgrzewanie, pozostawiając HA przylegający do danej powierzchni dzięki ich własnemu klejowi – przypomina to sos, który przywarł do patelni – podsumowuje prof. Macaskie.
  6. Ludzie zamieszkujący w epoce kamienia tereny dzisiejszego RPA byli początkującymi chemikami, którzy stworzyli naturalny klej. Połączyli właściwości zawierającej żelazo ochry z żywicą z drzewa akacjowego. Ok. 70 tys. lat temu ochra pełniła z pewnością funkcję dekoracyjną i/lub symboliczną. Szybko zaczęto jednak przypuszczać, że barwnik celowo dodawano do kleju, tak by lepiej spajał ze sobą poszczególne elementy narzędzi. Testując swoją hipotezę, naukowcy z University of the Witwatersrand w Johannesburgu odtworzyli klej, korzystając wyłącznie z narzędzi i materiałów dostępnych przed tysiącami lat. I co się okazało? Że klej z domieszką ochry był trwalszy - nie kruszył się - od wersji produkowanej wyłącznie z żywicy akacjowej. Członkini ekipy Lyn Wadley tłumaczy, że dzięki temu prostemu zabiegowi kamienne części przyrządów nie odchodziły od drzewca. Uzyskiwanie kleju nie było, wbrew pozorom, łatwym zadaniem. Wymagało uwzględnienia różnic zarówno w składzie żywicy drzew z poszczególnych rejonów, jak i zmiennych właściwości ochry. Ówcześni ludzie nie mieli co prawda pojęcia ani o pH, ani o zawartości żelaza, ale wiedzieli, jaka konkretna kombinacja składników sprawdza się najlepiej. Na klej natrafiono podczas wykopalisk w jaskini Sibudu na rzece Tongati. Pod mikroskopem porównywano 4 jego wersje: 1) oryginalną, 2) mieszankę ochry i żywicy z Acacia karroo, 3) mieszankę ochry, żywicy Acacia karroo oraz wosku pszczelego i 4) samą żywicę Acacia karroo. Oglądano je pod 50-krotnym powiększeniem. Archeolodzy przeprowadzili także eksperyment z podgrzewaniem prehistorycznego "superglue" nad ogniem.
  7. Wykorzystując kleistą substancję, za pomocą której morskie małże przytwierdzają się do skał, oraz zmodyfikowaną drukarkę atramentową, można przyspieszyć proces gojenia się ran pooperacyjnych i zapobiec powstawaniu blizn. Nowa metoda miałaby zastąpić tradycyjne szwy. Badacze z Uniwersytetu Stanowego Północnej Karoliny uważają, że gwarantuje ona większą precyzję, dlatego może się przydać choćby podczas operacji okulistycznych. Stosowanie szwów powoduje niekiedy dyskomfort, poza tym grozi zakażeniem i stanem zapalnym. Syntetyczne kleje tkankowe, np. cyjanoakrylowe, stosuje się od kilkudziesięciu lat, ale coraz częściej zwraca się uwagę na ich ewentualną toksyczność i wpływ na środowisko. Ponieważ nie są biodegradowalne i nie rozkładają się w organizmie, one także wywołują czasami stan zapalny i uszkadzają tkankę. Klej wytwarzany przez małże morskie mógłby z powodzeniem zastąpić syntetyczne kleje tkankowe. Nie jest toksyczny i ulega biodegradacji – uważa dr Roger Narayan. Co więcej, roztworem białek z wydzieliny małży dałoby się zastąpić tusz w piezoelektrycznych drukarkach atramentowych, a to doskonały sposób uzyskiwania spoiw na zamówienie (o określonych wymiarach i kształtach). To ulepszona metoda spajania tkanek, gdyż technologia atramentowa daje większą kontrolę nad rozmieszczeniem kleju. Pozwala upewnić się, że tkanki są ze sobą połączone dokładnie we właściwym punkcie [...] – podkreśla Narayan. Zastrzeżenia związane z toksycznością obejmują rozpuszczalniki, monomery i dodatki stosowane w syntetycznych klejach tkankowych. Klej małży nie zawiera formaldehydu i doskonale przywiera do różnych powierzchni, w tym szkła, metali, tlenków metali oraz polimerów. Podczas eksperymentów przepływ roztworu białek kleju małży przez dysze był kontrolowany za pomocą MEMS-ów. Próbki poddano spektroskopii w podczerwieni z transformacją Fouriera (ang. Fourier transform infrared spectroscopy, FTIR), zbadano je też pod mikroskopem sił atomowych. Wszystko to miało pomóc w określeniu ich właściwości chemicznych i budowy. Narayan współpracował z profesorem Jonem Wilkerem z Wydziału Chemii Purdue University.
  8. Leczenie rozległych ran bywa skomplikowane i uciążliwe. Po ich zaszyciu nierzadko dochodzi do zakażeń, zaś naprężenia wywołane przez ruchy pacjenta mogą powodować pękanie nici chirurgicznych lub uszkodzenia otaczającej tkanki. Na szczęście problemy te można z łatwością zminimalizować za pomocą cyjanoakrylanów - związków powszechnie sprzedawanych jako "superkleje". Najnowszy materiał, zbudowany z 2-cyjanoakrylanu oktylu, został właśnie dopuszczony do użytku przez FDA - amerykański urząd ds. leków i żywności. Wynalazek, opracowany przez ekspertów z prywatnej firmy Adhezion Biomedical, jest dziecinnie prosty w użyciu - wystarczy nanieść go na ranę i poczekać, aż dojdzie do wytworzenia spoiny. Głównym zastosowaniem produktu, nazwanego SurgiSeal, będzie wspomaganie interwencji chirurgicznych oraz działanie w nagłych przypadkach wymagających pośpiesznej reakcji lekarzy lub ratowników medycznych. Przedstawiciele producenta proponują także używanie nowego typu opatrunku do zabezpieczania nacięć powstałych podczas zabiegów wykonywanych przez chirurgów plastycznych. W przeciwieństwie do większości cyjanoakrylanów, produkt zaprezentowany przez Adhezion Biomedical nie wymaga chemicznego aktywatora i jest znacznie bardziej elastyczny od innych "superklejów" stosowanych dotychczas w medycynie. Posiada on także dodatkowe właściwości korzystne z punktu widzenia opieki nad pacjentem, takie jak nieprzemakalność czy właściwości bakteriostatyczne. Także jego usuwanie jest ułatwione w porówaniu do większości opatrunków z tej rodziny. Niestety, obecnie nie wiadomo, czy wynalazek opracowany przez Adhezion Biomedical trafi na rynek europejski.
  9. Zastosowanie prostej procedury umożliwia aktywizację komórek macierzystych i ułatwia ich dostarczenie do tkanek, w których są potrzebne. Odkrycie może stać się istotnym udoskonaleniem wielu innych technik związanych z wykorzystaniem tych niezwykłych komórek. Kiedy pobrane z organizmu komórki macierzyste znajdują się w naczyniu hodowlanym zbyt długo, po pewnym czasie "starzeją się" i tracą swoje unikalne właściwości. Na ich powierzchni zanikają kluczowe białka, odpowiedzialne za przyleganie do ścian naczyń krwionośnych. Powoduje to, że ich aktywność znacznie maleje, a podanie do organizmu daje efekt daleki od optymalnego. Okazuje się jednak, że wystarczy zaledwie 45 minut, by pożądane cechy w znacznym stopniu powróciły. Molekułą kluczową dla "ożywienia" komórek macierzystych jest SLeX (ang. Sialyl Lewis X), związek należący do grupy węglowodanów, przyłączony do białek na powierzchni wielu typów komórek. Naukowcy z Wydziału Nauk o Zdrowiu i Technologii prowadzonego wspólnie przez MIT oraz Uniwersytet Harvarda wykazali, że przyłączenie cząsteczek SLeX znacznie ułatwia migrację komórek macierzystych przez ściany naczyń krwionośnych. Krwiobieg jest znakomitym sposobem dostarczania [komórek - red.], lecz komórki macierzyste nie poruszają się w naczyniach krwionośnych, jeżeli były trzymane w hodowli komórkowej. Opracowana przez nas procedura daje nadzieję na pokonanie tej przeszkody, tłumaczy Jeffrey Karp, jeden z badaczy zaangażowanych w eksperyment. Wyniki badań przeprowadzonych przez jego zespół zostały opublikowane na łamach czasopisma Bioconjugate Chemistry. Aby komórki macierzyste mogły skutecznie pełni swoją rolę w terapii, muszą najpierw dotrzeć do tkanki, w której mają funkcjonować. Problem w tym, że jeśli zbyt długo przebywają poza organizmem, mają tendencję do pasywnego unoszenia się w strumieniu krwi i nie wiążą się ze ścianami naczyń krwionośnych. Przeprowadzony na Wydziale Nauk o Zdrowiu i Technologii eksperyment pokazuje, że umiejętne przyłączenie cząsteczek SLeX do powierzchni komórek znacznie ułatwia ten proces. Opisywana procedura trwa łącznie 45 minut i składa się z trzech etapów, w których komórki są inkubowane z kolejnymi substancjami. Pierwszą z nich jest biotyna, zwana też witaminą H, mająca zdolność do wiązania się z powierzchnią komórek macierzystych. Następnie przyłącza się do niej cząsteczki białka streptawidyny, stosowane powszechnie w laboratoriach właśnie ze względu na ogromną siłę wzajemnego wiązania obu związków. Do powstałego w ten sposób kompleksu dodaje się cząsteczki SLeX. Aby potwierdzić skuteczność procedury, badacze pobrali ze szpiku kostnego komórki macierzyste i hodowali je w laboratorium tak długo, aż straciły część swoich unikalnych właściwości. Dopiero wtedy zostały "oblepione" SLeX. Eksperyment przeprowadzony w warunkach laboratoryjnych wykazał, że w wyniku procedury komórki nabyły pożądaną cechę, jaką jest zdolność do wiązania się ze ścianami naczyń krwionośnych i "toczenie się" po ich powierzchni. Co ważne, nie tracą przy tym swojej żywotności. Zastosowana technika ma jeszcze jedną zaletę. Udoskonalenie techniki wykorzystującej cząsteczki biotyny i streptawidyny umożliwia przyłączanie do komórek także wielu innych substancji, otwierając tym samym drogę do kolejnych odkryć i modyfikacji. Autorzy zastrzegają, że konieczne jest przeprowadzenie testów na zwierzętach, które ostatecznie potwierdzą (lub podważą) prawdziwość ich przypuszczeń. Jeżeli okaże się, że opracowana procedura rzeczywiście spełnia oczekiwania, możemy stać się świadkami prawdziwie przełomowego odkrycia. Pozwoli ono na znaczną poprawę skuteczności eksperymentalnych terapii wykorzystujących właściwości komórek macierzystych.
  10. Być może już za kilka lat chirurdzy zrezygnują z zakładania szwów na rzecz klejenia tkanek. Pomysły na to, jak wprowadzić zamiar w życie, naukowcy zaczerpnęli od małży, które potrafią przywierać zarówno do porowatych, jak i gładkich powierzchni. Wtedy przeszczepiane serce czy nerkę można by przykleić do tkanek biorcy, a miejsce połączenia utwardzić promieniowaniem ultrafioletowym. Po 30 sekundach procedura byłaby zakończona. Dr Klaus Rischka, chemik z Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research (IFAM), jest przekonany, że niedługo idea ta stanie się czymś więcej niż tylko nagrodzonym projektem. Już wkrótce klej zostanie wykorzystany do zamocowania tytanowego implantu stomatologicznego. Obecnie implanty zębów są mocowane w kościach szczęki bez kleju. Wskutek tego między dziąsłem a metalem często pozostaje szczelina, w którą mogą wnikać bakterie. Wtedy rozwija się stan zapalny. Klej, który na stałe połączyłby implanty z dziąsłem, stanowiłby skuteczną barierę. Zwykłe produkty nie nadają się do tego celu, ponieważ z czasem by się rozpuściły. Naukowcy z IFAM zidentyfikowali substancję, która pozwala małżom na trwałe przyczepianie się do zanurzonych w wodzie obiektów. Siłę wiązania klej zawdzięcza pewnemu białku. Chemikom udało się je odtworzyć w warunkach laboratoryjnych. Rozwiązanie wykorzystano już do codziennych napraw, przeprowadzanych przez załogę obsługującą loty Europejskiej Agencji Kosmicznej. Zastosowania medyczne wymagają dodatku białka wzrostu, które może zostać wyprodukowane dzięki syntezie peptydów na fazie stałej. Miałoby ono stymulować wzrost tkanek gospodarza; związałyby się one jak najbliżej z wprowadzanym do organizmu ciałem obcym. Do opisanego wyżej duetu trzeba jeszcze dołączyć trzeci element: polimerowy nośnik. Naukowcy szacują, że dwa lata zajmą prace przygotowawcze do prób klinicznych. Potem potrzeba kolejnych 5-10 lat na testy.
  11. Philip Messersmith i jego zespół z Northwestern University w Illinois postanowili połączyć techniki, dzięki którym gekony i małże jadalne potrafią przyczepiać się do różnych podłoży. Stworzyli w ten sposób niezwykłą substancję klejącą. Gekony zadziwiają ludzi zdolnościami poruszania się nawet głową w dół. Potrafią chodzić po suficie, dzięki specyficznej budowie swoich stóp. Posiadają one bowiem setki włosków, z których każdy zbudowany jest z setek mikroskopijnej wielkości włókien. Pomiędzy stopą gekona a powierzchnią, po której się porusza, tworzą się tzw. oddziaływania van der Waalsa. Pojedyncze oddziaływanie jest słabe, jednak tysiące z nich są już na tyle mocne, że pozwalają na skuteczne przytwierdzenie zwierzęcia do ściany. Naukowcy od dawna próbowali wykorzystać to, co gekonowi dała natura. Tworzyli syntetyczne substancje klejące, które naśladowały budowę stóp zwierzęcia. Istniał jednak poważny problem. Substancje musiały być suche, gdyż woda poważnie osłabia oddziaływania van der Waalsa. Uczeni z Illinois postanowili „zwrócić się o pomoc” do innego zwierzęcia, które świetnie przytwierdza się do pionowych powierzchni – żyjącego w wodnym środowisku małża jadalnego. Messersmith wpadł na pomysł, by połączyć syntetyczny „gekoni” klej z technikami wykorzystywanymi przez małża. Najpierw zbadali białka, które wchodzą w skład substancji pozwalających małżowi na przyczepienie się do skały. Następnie z miękkiego polimeru zbudowali materiał, który przypominał stopę gekona i pokryli go różnymi roztworami, w których znajdowały się polimery naśladujące budowę białek małża. Zwierzę korzysta z całego szeregu protein, które tworzą w obecności wody sile wiązania zarówno z powierzchniami organicznymi jak i nieorganicznymi. Uczeni wykorzystali jedną z nich, zwaną DOPA. Swoją nową hybrydową substancje klejącą uczeni nazwali „geckelem”. Teraz chcą przejść ze skali mikro do skali makro. Messersmith mówi, że za pomocą techniki, którą wykorzystywali do tej pory, uda im się stworzyć klejący materiał o powierzchni 1 centymetra kwadratowego. Stworzenie większych kawałków będzie jednak wymagało opracowania nowych technik. Naukowiec uważa jednak, że gra jest warta świeczki. Amerykański uczony mówi, że klej przyda się np. w chirurgii. Tkanki w naszym ciele są wilgotne, nowy klej będzie więc idealny. W przyszłości pomoże on w skonstruowaniu pojazdów, które będą chodziły po strukturach znajdujących się pod wodą.
  12. Aby porównać śluz naturalny ze sztucznym, inżynierowie z MIT i Katolickiego Uniwersytetu w Louvain (CUL) skonstruowali robota-ślimaka, który potrafi wspinać się po pionowych ścianach niczym alpinista. Śluz ślimaka jest klejem, a zarazem substancją poślizgową. Dzięki niemu zwierzę przemieszcza się po powierzchniach niemal prostopadłych w stosunku do podłoża, nie odpadając od nich. Przyklejony do podłoża ślimak wypycha tylną część ciała ku przodowi. Dzięki temu odrywa się od łodygi czy betonowego murku, a następnie śluz znowu bezpiecznie przytwierdza go do nich. Naukowcy chcieli zbadać cykl rozkładu (odrywania od podłoża) i odnowy (ponownego przyklejania) kleju ślimaka, dlatego prześledzili właściwości syntetycznych śluzów, wyprodukowanych w oparciu o glinę i polimery. Wyliczyli też właściwości idealnego śluzu, który umożliwiałby wspinaczkę robotowi. Ważnym wnioskiem jest to, że prawdziwy śluz ślimaka nie jest potrzebny, by maszyna mogła wspinać się po ścianach. Możemy wyprodukować własny materiał adhezyjny, który pozwala na przemieszczanie się i to przy wykorzystaniu kupnych preparatów z farm ślimaków — wyjaśnia Randy Ewoldt z MIT. Jego współpracownik z CUL, Christian Clasen, dodaje, że dobre substancje poślizgowo-klejące to także żel do włosów, majonez, smar czy masło orzechowe (Soft Matter). Ewold jako pierwszy zetknął się z problemami zbierania śluzu od prawdziwych ślimaków, bo jest pionierem tego typu hodowli. Wabię ślimaki nagie lub oskorupione liściem sałaty. Gdy mam szczęście, przemierzą w poprzek całą ściankę akwarium i zostawią wystarczającą ilość śluzu, bym mógł ją zebrać.
  13. Naukowcy z Indiana University i Brown University zadali sobie pytanie, jak to się dzieje, że rozpowszechnione bakterie Caulobacter crescentus bez najmniejszego problemu żyją przyczepione kamieni czy roślin w szybko płynącej wodzie. Przyglądając się mikroorganizmom odkryli substancję, która najprawdopodobniej jest najmocniejszym naturalnym klejem. W przyszłości może on znaleźć zastosowanie w wielu dziedzinach, od medycyny ratunkowej po łatanie okrętów na pełnym morzu. Caulobacter crescentus wytwarza substancję, składającą się z polisacharydów oraz niezidentyfikowanych jeszcze molekuł. Gdy uczeni, dzięki manipulacjom genetycznym, pozbawili ich tej substancji, mikroorganizmy nie były w stanie przyczepić się do żadnej powierzchni. Za to te, które ją posiadały, kleiły się do roślin, szkła, kamienia, metalu i innych mikroorganizmów. Co ważne, C.crescentus jest całkowicie nieszkodliwa dla człowieka, dzięki czemu jej klej może znaleźć zastosowanie w medycynie. Bliższe badania wykazały, że do oderwania bakterii od szklanej pipepty konieczne było użycie trzykrotnie większej siły, niż do oderwania przedmiotu przyklejonego nowoczesnym superklejem. Siła, potrzebna do jej oderwania, wyniosła ponad 70 niutonów na milimetr kwadratowy, czyli ponad 713 kilogramów na centymetr kwadratowy.
×
×
  • Dodaj nową pozycję...