Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'kanał sodowy'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 3 results

  1. Istotny składnik zwierzęcego układu nerwowego – kanał sodowy – pojawił się w toku ewolucji przed wykształceniem samego układu nerwowego. Pierwszy układ nerwowy pojawił się u meduzopodobnych zwierząt ok. 600 mln lat temu i sądzono, że kanały sodowe również wyewoluowały w tym czasie. Ostatnio odkryliśmy jednak, że kanały sodowe istniały przed pojawieniem się układów nerwowych – opowiada prof. Harold Zakon z Uniwersytetu Teksańskiego w Austin. Układ nerwowy i jego podstawowa jednostka budulcowa neuron to istotny krok w ewolucji zwierząt. Umożliwiają one komunikację między komórkami z odległych części organizmu, percepcję zmysłową, zachowanie i rozwój złożonego mózgu. Bramkowane elektrycznie kanały sodowe stanowią zaś integralną część neuronu. Gdy dokomórkowe prądy kationów przeważają nad odkomórkowymi, dochodzi do osiągnięcia potencjału progowego i otwarcia kanałów sodowych. Kationy Na+ depolaryzują błonę i zapoczątkowują tzw. potencjał iglicowy. Zakon, prof. David Hillis i student Benjamin Liebeskind odkryli, że geny kanałów jonowych występowały w jednokomórkowym organizmie – wiciowcu kołnierzykowym (Choanoflagellata). Naukowcy sporządzili drzewo filogenetyczne, ukazując związek genów występujących u wiciowca Monosiga brevicollis i organizmów wielokomórkowych, włączając w to meduzy, gąbki, muchy i ludzi. Ponieważ geny kanałów sodowych odnaleziono u wiciowca kołnierzykowego, Amerykanie uważają, że geny te pojawiły się nie tylko przed układem nerwowym, ale także przed wykształceniem wielokomórkowości jako takiej. Geny te zostały "dokooptowane" przy okazji ewoluowania układów nerwowych u wielokomórkowych zwierząt. Opisane studium pokazuje, że złożone cechy, takie jak układ nerwowy, mogą ewoluować stopniowo, często z elementów utworzonych pierwotnie do innych celów. Nowe ewolucyjnie organy nie pojawiają się znikąd, tylko wykorzystują istniejące geny, których zadanie polegało wcześniej na czymś innym – podkreśla Hillis.
  2. Ludzie z analgezją wrodzoną, którzy w ogóle nie odczuwają bólu, cierpią również na anosmię (całkowitą utratę węchu), dlatego nie potrafią odróżniać zapachów. Dzieje się tak, ponieważ i jedno, i drugie zależy od niewystępującego u nich kanału jonowego Nav1.7. Jan Weiss ze Szkoły Medycznej Uniwersytetu w Saarze badał 3 osoby z analgezją wrodzoną: rodzeństwo i jeszcze jednego ochotnika. Niemcy chcieli sprawdzić, jak działają zmysły pacjentów i czy zawodzi coś jeszcze poza odczuwaniem bólu. Okazało się, że badani dobrze widzą i słyszą. Sądzili też, że dobrze wyczuwają wonie, ale testy obaliły to przekonanie. Naukowcy zastosowali nasączone waciki. Pachniały one octem winnym, pomarańczą, miętą, perfumami i kawą. Chorzy z analgezją nie byli w stanie ich odróżnić. Gdy powtórzono badanie z 9 zdrowymi ludźmi i rodzicami uczestniczącego w eksperymencie rodzeństwa, wystąpiła oczekiwania reakcja. Członkowie grupy kontrolnej odwracali nos od ostrego zapachu octu i z przyjemnością zaciągali się wonią pomarańczy czy perfum. Niemcy już wcześniej wiedzieli, że u osób z analgezją wrodzoną w błonach komórek zwojów korzeni grzbietowych nerwów rdzeniowych nie występują bramkowane napięciem kanały sodowe Nav1.7 (w genie SCN9A dochodzi do mutacji utraty funkcji). Zastanawiali się więc, czy ich brak nie odpowiada przypadkiem również za kłopoty z węchem. Z błony śluzowej nosa i pozostałych części układu węchowego zdrowych osób pobrano więc próbki tkanek. Okazało się, że w błonach neuronów węchowych znajdowały się kanały jonowe Nav1.7. Później ekipa Weissa wyhodowała myszy pozbawione Nav1.7 w neuronach węchowych. Stwierdzono, że w odpowiedzi na zapachy komórki te nadal generowały potencjał czynnościowy, ale nie dochodziło do synaptycznego przekazania sygnału do sąsiednich neuronów. Zwierzęta nie reagowały ani na wonie jedzenia, ani na zapach moczu osobnika płci przeciwnej, ani wreszcie na zapach wroga, w tym wypadku lisa. Nie umiały się też nauczyć nowych zapachów. Matki oddzielone od potomstwa nie były w stanie odnaleźć młodych. Frank Zufall, współpracownik Weissa, podkreśla, że odkrycie związku między odczuwaniem bólu i zapachów było bardzo zaskakujące. Nie wiemy, czemu te dwa zmysły wykorzystują ten sam kanał jonowy, ale niewykluczone, że to bardziej rozpowszechniony w układach czuciowych kanał sodowy. Wcześniejsze badania pokazały, że do jego ekspresji dochodzi w komórkach smakowych. Zufall zaznacza, że w przyszłości trzeba będzie sprawdzić, czy leki przeciwbólowe, które często obierają na cel właśnie kanały sodowe, nie wpływają jednocześnie negatywnie na powonienie.
  3. Wiele wskazuje na to, że uszkodzenia płuc związane z infekcją wirusem grypy można z łatwością ograniczyć stosując przeciwutleniacze - twierdzą badacze z University of Alabama. Opisywane związki nie niszczą co prawda wirusa w sposób bezpośredni, lecz ograniczają jego wpływ na organizm i mogą blokować niektóre objawy uboczne zakażenia. W swoim studium, prowadzonym pod kierownictwem Ahmeda Lazraka, autorzy skupili się na działaniu białka M2. Proteina ta, występująca na powierzchni cząstek wirusa grypy, ma za zadanie ułatwienie wnikania patogenu do organizmu żywiciela. Jednym z efektów jej aktywności jest upośledzenie funkcji pęcherzyków płucnych i zwiększenie się ilości płynu zalegającego we wnętrzu płuc, przez co dochodzi do osłabienia wymiany gazowej i zwiększenia ryzyka kolejnych infekcji. Badacze z Alabamy chcieli sprawdzić, czy M2 wchodzi w interakcję z wytwarzanym przez organizm człowieka kanałem sodowym - białkiem, którego zadaniem jest przenoszenie jonów sodowych z wnętrza płuc do wnętrza komórek. Wraz z jonami, na drodze osmozy, z płuc do komórek przenika woda, co zapobiega jej akumulacji w najgłębszych partiach płuc. Oba badane białka wszczepiono do wnętrza żabich jaj. Jak się okazało, M2 skutecznie blokowało działanie kanału sodowego i zapobiegało pochłanianiu przez komórkę wody. Identycznych obserwacji dokonano podczas obserwacji ludzkich komórek nabłonka płuc. Co więcej, badaczom udało się zidentyfikować fragment M2 odpowiedzialny za wywoływanie szkodliwych efektów. W ostatnim etapie projektu badacze ponownie zbadali interakcję M2 i białek ludzkich, lecz tym razem do mieszanki dodano związki o charakterze przeciwutleniaczy. Jak się okazało, obniżały one aktywność M2 aż o 70%. Może to oznaczać, że wzbogacenie diety o dodatkową porcję antyoksydantów może skutecznie blokować rozwój zakażenia wirusem grypy także w organizmie człowieka.
×
×
  • Create New...