Search the Community
Showing results for tags 'grafen'.
Found 62 results
-
W projektach związanych z syntezą termojądrową konieczne jest wykorzystanie materiałów odpornych na wysokie temperatury i uszkodzenia radiacyjne. Obiecujące pod tym względem są materiały bazujące na węglu, zwłaszcza nanorurki węglowe i grafen. Naukowcy z Zakładu Badań Reaktorowych NCBJ brali udział w badaniach odporności detektorów grafenowych na wysokie strumienie neutronów. Reaktory termojądrowe, takie jak powstające obecnie w Cadarache we Francji urządzenie badawcze ITER (International Thermonuclear Experimental Reactor), czy powstający w Hiszpanii jego następca – DEMO (Demonstration Power Plant), wykorzystują silne pole magnetyczne do uwięzienia plazmy, w której zachodzą reakcje syntezy lekkich jąder atomowych. By umożliwić efektywne zachodzenie reakcji syntezy, plazmę należy podgrzać do temperatury dziesiątek milionów stopni Celsjusza. Aby zapewnić stabilne działanie urządzenia, konieczna jest precyzyjna diagnostyka pola magnetycznego. Ze względu na działające na znajdującą się we wnętrzu reaktora elektronikę warunki, takie jak wysoka temperatura (rzędu kilkuset °C) czy silne promieniowanie neutronowe, większość komercyjnie dostępnych półprzewodnikowych czujników pola magnetycznego nie jest w stanie pracować w takich układach. Z tego powodu prowadzone są badania nad detektorami metalowymi, opartymi o chrom czy bizmut. Niestety, detektory oparte o nie mają niską czułość i duży przekrój czynny na oddziaływanie z neutronami. Interesującą alternatywą wydają się być detektory wykonane w technologii kwaziswobodnego grafenu epitaksjalnego na węgliku krzemu. Warstwy grafenu mogą być formowane w bardzo czułe sensory efektu Halla: jeżeli przewodnik, przez który płynie prąd elektryczny, znajduje się w polu magnetycznym, pojawia się w nim różnica potencjałów – tzw. napięcie Halla, które może posłużyć do pomiaru pola magnetycznego. Zbadana została już odporność grafenu na promieniowanie. Badania przeprowadzono wykorzystując zarówno wiązki jonów, protonów, jak i elektronów, i nie wykryto istotnych zmian właściwości napromienionych próbek. Przewidywania teoretyczne sugerują, że podobnie grafen reaguje na promieniowanie neutronowe, jednak nigdy wcześniej nie zostało to bezpośrednio potwierdzone eksperymentalnie. W pracy, która ukazała się na łamach czasopisma Applied Surface Science, zbadano wpływ prędkich neutronów na układ detektora opartego na grafenie. Instytut Mikroelektroniki i Fotoniki (IMiF) funkcjonujący w Sieci Badawczej Łukasiewicz wytworzył strukturę składającą się z grafenu na wysyconej atomami wodoru powierzchni węglika krzemu 4H-SiC(0001). Całość pokryto dielektryczną pasywacją z tlenku glinu, stanowiącą zabezpieczenie środowiskowe warstwy aktywnej detektora – mówi dr inż. Tymoteusz Ciuk, kierujący pracami w Łukasiewicz-IMiF. Tak przygotowany układ został następnie poddany napromienieniu neutronami prędkimi wewnątrz rdzenia reaktora MARIA w NCBJ. Zamontowana w rdzeniu reaktora MARIA unikatowa instalacja do napromieniania neutronami prędkimi pozwala nam przeprowadzać badania materiałów, bądź podzespołów przewidywanych do wykorzystania w układach termojądrowych, w których także są generowane prędkie neutrony – opowiada dr inż. Rafał Prokopowicz, kierownik Zakładu Badań Reaktorowych NCBJ, współautor pracy. W przypadku badań nad strukturami detekcyjnymi z grafenu, próbki napromienialiśmy przez ponad 120 godzin neutronami prędkimi o fluencji rzędu 1017 cm–2, by oddać warunki, na jakie narażona jest elektronika w instalacjach termojądrowych – dodaje mgr Maciej Ziemba z Zakładu Badań Reaktorowych. „Aby zapewnić bezpieczeństwo badań, testy podzespołów wykonano, gdy aktywność próbek nie stanowiła już zagrożenia, czyli po kilku miesiącach od napromienienia”. Zarówno przed napromienieniem, jak i po napromienieniu próbek, w Instytucie Fizyki Politechniki Poznańskiej dokładnie zbadano ich strukturę i właściwości elektryczne. Wykorzystano do tego spektroskopię Ramana, badania efektu Halla, jak również wielkoskalowe modelowanie z użyciem teorii funkcjonału gęstości (DFT – density functional theory). Dodatkowo, naukowcy z Politechniki Poznańskiej przeprowadzili charakteryzację napromienionych struktur po ich wygrzewaniu w temperaturze od 100 do 350°C, by zbadać działanie temperatury, w połączeniu z wpływem prędkich neutronów, na właściwości elektryczne. Dzięki testom wykryto na przykład, że z powodu promieniowania, w materiale pojawia się zależność właściwości elektrycznych od temperatury, która nie występowała przed umieszczeniem próbek w strumieniu neutronów – wyjaśnia dr inż. Semir El-Ahmar, kierujący badaniami na Politechnice Poznańskiej. Co więcej, promieniowanie neutronowe powoduje zmniejszenie gęstości nośników ładunku w badanej strukturze. Okazuje się jednak, że odpowiada za to warstwa wodoru, a więc napromienienie jedynie w umiarkowanym stopniu wpływa na strukturę i właściwości grafenu. Na podstawie charakteryzacji właściwości badanych struktur przed napromienieniem i po ich napromienieniu, oceniono odporność grafenu na promieniowanie neutronowe jako bardzo dobrą. Gęstość uszkodzeń radiacyjnych była 7 rzędów wielkości mniejsza, niż wartość strumienia neutronów, co oznacza dość niski przekrój czynny grafenu na oddziaływanie z neutronami prędkimi. Mimo, iż wystąpiły uszkodzenia struktury spowodowane promieniowaniem, to w porównaniu z detektorami bazującymi na metalach, czułość układu z grafenem na pole magnetyczne pozostaje kilka rzędów wielkości większa – podsumowuje wyniki dr El-Ahmar. Dodatkowo, okazało się, że duża część uszkodzeń była związana nie z samymi warstwami grafenu, a z warstwą wodoru, która z kolei przy temperaturach powyżej 200°C, jakie będą panować w instalacjach takich jak DEMO, wykazuje wręcz pewien potencjał samo-naprawczy. Z uwagi na to, grafenowe detektory pola magnetycznego mogą stanowić obiecujące struktury do wykorzystania w reaktorach termojądrowych. Nad zastosowaniem grafenu jako bazy przy detekcji pola magnetycznego w instalacjach termojądrowych prowadzone będą dalsze badania. Naukowcy rozważają wykorzystanie innego typu podłoża – np. 6H-SiC(0001), na którym formowana struktura może być bardziej odporna na promieniowanie neutronowe. Rozważane jest też zastąpienie warstwy wodoru buforową warstwą atomów węgla. « powrót do artykułu
-
- grafen
- reaktor termojądrowy
-
(and 1 more)
Tagged with:
-
Chińscy naukowcy uzyskali wysokiej jakości piankę grafenową z gazów odpadowych pochodzących z pirolizy odpadów organicznych. Chińczycy twierdzą, że ich metoda jest tańsza i bardziej przyjazna dla środowiska niż dotychczasowe sposoby wytwarzania pianki. Jak zapewnia Hong Jiang z Chińskiego Uniwersytetu Nauki i Technologi w Hefei, wyprodukowany materiał jest strukturalnie podobny do pianek grafenowych uzyskiwanych standardowymi metodami. Wykazuje on też podobne właściwości elektryczne i oraz równie dobrze absorbuje ciecze takie jak benzen czy parafina. Pianki grafenowe to trójwymiarowe wersje płaskich dwuwymiarowych płacht grafenu. Są one wytrzymałem, charakteryzują się dużym przewodnictwem elektrycznym, świetnie przewodzą ciepło. Mają wiele potencjalnych zastosowań. Mogą być używane do przechowywania energii, oczyszczania środowiska, przydadzą się chemikom, sprawdzą w roli bioczujników. Zwykle produkuje się je metodą osadzania z fazy gazowej. W metodzie tej gaz zawierający węgiel – np. metan – jest wprowadzany do podgrzanego metalowego substratu, zwykle jest nim pianka aluminiowa lub miedziana. Gdy gaz wchodzi w kontakt z substratem, dochodzi do osadzania się atomów węgla. Po zakończeniu reakcji metal jest wytrawiany i pozostaje grafenowa pianka. Osadzanie z fazy gazowej to metoda kosztowna, która wymaga użycia dużych ilości gazu. Dlatego też Jiang i jego zespół postanowili wykorzystać bogate w węgiel gazy z biorafinerii. W tego typu zakładach odpady organiczne są podgrzewane bez dostępu tlenu do temperatury 500 stopni Celsjusza lub wyższej. W procesie pirolizy powstaje biopaliwo. Chińczycy wykorzystali dwa składniki roślinne – sproszkowaną celulozę i sproszkowaną ligninę – które poddano pirolizie w temperaturze 800 stopni Celsjusza. Powstałe gazy zostały przefiltrowane, dzięki czemu oddzielono gazy o dużych molekułach. Następnie gazy o drobnych molekułach skierowano do komory osadzania z fazy gazowej, w której znajdowała się pianka aluminiowa. Uzyskany produkt przebadano za pomocą spektroskopii ramanowskiej i skaningowej mikroskopii elektronowej. Są dobrej jakości, nie widać w nich oczywistych defektów, mówi Jiang. Oczywiście sproszkowana celuloza i lignina są dalekie od standardowych odpadów organicznych. Dlatego też w kolejny etapie badań naukowcy wykorzystali słomę i trociny. Wyprodukowana z nich pianka grafenowa była nieco gorszej jakości niż ta z celulozy i ligniny. Jednak oba rodzaje miały jednorodną strukturę i świetne właściwości w zastosowaniach środowiskowych oraz do przechowywania energii. Zdaniem Jianga najlepszymi odpadami do produkcji pianek będą te zawierające dużo ligniny, celulozy i hemicelulozy. Jednak użyć można też innych materiałów. Oczywiście różne dodatki znajdujące się w takich odpadach wpłyną na skład pianki. Na przykład jeśli w odpadach będzie znajdowało się dużo azotu i siarki, to pierwiastki te mogą trafić też do pianki, wyjaśnia uczony. Edward Randviir z Manchester Metropolitan University, który nie brał udziału w opisywanych badaniach, mówi, że zwykle pianki grafenowe produkuje się za paliw kopalnych lub z czystego grafitu. Warto poszukać alternatyw dla tych materiałów, a Jiang i jego ludzie wykazali, że produkcja grafenu z biomasy jest możliwa. Jest też bardziej przyjazna środowisku i tańsza niż inne metody. Ten drugi element może jednak ulec zmianie. Grafen jest obecnie drogi, gdyż nie istnieją metody produkowania go na masową skalę. Jeśli się to zmieni, cena grafenu powinna spaść. « powrót do artykułu
-
- grafen
- pianka grafenowa
- (and 3 more)
-
Inżynierowie z University of Illinois pogodzili ekspertów, którzy nie mogli dotychczas dojść do porozumienia, co do właściwości grafenu odnośnie jego zginania. Dzięki połączeniu eksperymentów z modelowaniem komputerowym określili, ile energii potrzeba do zgięcia wielowarstwowego grafenu i stwierdzili, że wszyscy badacze, którzy uzyskiwali sprzeczne wyniki... mieli rację. Większość badań nad grafenem skupia się na zbudowaniu z niego przyszłych urządzeń elektronicznych. Jednak wiele technologii przyszłości, jak elastyczna elektronika, czy miniaturowe niewidoczne gołym okiem roboty, wymagają zrozumienia nie tylko właściwości elektrycznych, ale i mechanicznych grafenu. Musimy się dowiedzieć przede wszystkim, jak materiał ten rozciąga się i zgina. Sztywność materiału to jedna z jego podstawowych właściwości mechanicznych. Mimo tego, że badamy grafen od dwóch dekad, wciąż niewiele wiemy na temat tej jego właściwości. A dzieje się tak, gdyż badania różnych grup naukowych dawały wyniki, różniące sie od siebie o całe rzędy wielkości, mówi współautor najnowszych badań, Edmund Han. Naukowcy z Illinois odkryli, dlaczego autorzy wcześniejszych badań uzyskiwali tak sprzeczne wyniki. Zginali grafen albo w niewielkim albo w dużym stopniu. Odkryliśmy, że w sytuacjach tych grafen zachowuje się odmienne. Gdy tylko trochę zginasz wielowarstwowy grafen, to zachowuje się on jak sztywna płyta, jak kawałek drewna. Jeśli jednak zegniesz go mocno, zaczyna zachowywać się jak ryza papieru, poszczególne warstwy atomów ślizgają się po sobie, wyjaśnia Jaehyung Yu. Ekscytujące jest to, że mimo iż wszyscy uzyskiwali odmienne wyniki, to wszyscy mieli rację. Każda z grup mierzyła coś innego. Opracowaliśmy model, który wyjaśnia wszystkie różnice poprzez pokazanie, jak się one mają do siebie w zależności od kąta wygięcia grafenu, mówi profesor Arend van der Zande. Naukowcy stworzyli własne płachty wielowarstwowego grafenu i poddawali je badaniom oraz modelowaniu komputerowemu. W tej prostej strukturze istnieją dwa rodzaje sił zaangażowanych w zginanie grafenu. Adhezja, czyli przyciąganie atomów na powierzchni, próbuje ściągnąć materiał w dół. Im jest on sztywniejszy, tym większy opór stawia adhezji. Wszelkie informacje na temat sztywności materiału są zakodowane w kształcie, jaki przybiera on na poziomie atomowym podczas zginania, dodaje profesor Pinshane Huang. Naukowcy szczegółowo kontrolowali, w jaki sposób materiał się zgina i jak w tym czasie zmieniają się jego właściwości. Jako, że badaliśmy różne kąty wygięcia, mogliśmy zaobserwować przejście z jednego stanu, w drugi. Ze sztywnego w giętki, ze sztywnej płyty do zachowania ryzy papieru, stwierdza profesor Elif Ertekin, który był odpowiedzialny za modelowanie komputerowe. Najpierw stworzyliśmy modele komputerowe na poziomie atomowym. Wykazały one, że poszczególne warstwy będą ślizgały się po sobie. Gdy już to wiedzieliśmy, przeprowadziliśmy eksperymenty z wykorzystaniem mikroskopu elektronowego, by potwierdzić występowanie tego zjawiska". Okazuje się więc, że im bardziej grafen zostaje wygięty, tym bardziej elastyczny się staje. Badania te mają olbrzymie znaczenie np. dla stworzenia w przyszłości urządzeń, które będą na tyle małe i elastyczne, by mogły wchodzić w interakcje z komórkami czy materiałem biologicznym. Komórki mogą zmieniać kształt i reagować na sygnały ze środowiska. Jeśli chcemy stworzyć mikroroboty czy systemy o właściwościach systemów biologicznych, potrzebujemy elektroniki, która będzie w stanie zmieniać kształt i będzie bardzo miękka. Możemy wykorzystać fakt, że poszczególne warstwy wielowarstwowego grafenu ślizgają się po sobie, dzięki czemu materiał ten jest o rzędy wielkości bardziej miękki niż standardowe materiały o tej samej grubości, wyjaśnia van der Zande. « powrót do artykułu
-
Grafenowa ochrona przed promieniowaniem podczerwonym
KopalniaWiedzy.pl posted a topic in Technologia
Naukowcy z Wydziału Inżynierii Chemicznej i Procesowej Politechniki Warszawskiej wykorzystują tlenek grafenu i związki grafenopochodne do opracowania nowych materiałów zabezpieczających przed promieniowaniem podczerwonym. Projekt IR-GRAPH realizowali ze środków Narodowego Centrum Badań i Rozwoju. Chcemy, żeby nasze materiały stanowiły barierę zarówno przed wpuszczaniem, jak i wypuszczaniem ciepła – mówi kierująca pracami dr inż. Marta Mazurkiewicz-Pawlicka. To kompozyty. Tworzymy je na bazie polimerów, obecnie dwóch rodzajów. Jako napełniacz stosujemy materiały grafenowe z dodatkiem tlenków metali, np. tlenku tytanu. Takie połączenie gwarantuje skuteczne ekranowanie. Materiały grafenowe są dodawane w celu pochłonięcia promieniowania, a tlenki metali mają za zadanie je rozpraszać – wyjaśnia badaczka. Konkurencyjny materiał Na rynku są już dostępne np. folie na okna, które chronią przed promieniowaniem. Materiały opracowywane przez naukowców z Politechniki Warszawskiej mogą być jednak dla nich konkurencją. Żeby obniżyć temperaturę o kilka stopni Celsjusza, dodaje się tam około 5% napełniacza – tłumaczy dr Mazurkiewicz-Pawlicka. My podobne wyniki uzyskujemy przy dodaniu 0,1% napełniacza, czyli 50 razy mniej. Na razie zespół skupia się jednak na samych materiałach, a nie konkretnych aplikacjach. Choć nietrudno wskazać potencjalne zastosowania, takie jak właśnie okna, ale też elewacje, a nawet tkaniny. Zimą takie materiały chroniłyby przed utratą ciepła, a latem przed nadmiernym nagrzaniem. W przypadku budynków czy pojazdów mogłaby to być pewna alternatywa dla powszechnie dzisiaj stosowanej klimatyzacji. Jej używanie pochłania przecież mnóstwo energii. Im bardziej chcemy zmienić temperaturę w stosunku do tej naturalnej dla danego pomieszczenia, tym więcej energii potrzeba. Każde mniej energochłonne wsparcie oznaczałoby oszczędności w budżecie i korzyść dla środowiska. Patrząc w przyszłość Nasi naukowcy przeprowadzili badania krótkoterminowe. Ich wyniki są obiecujące, ale wiele kwestii wymaga jeszcze dokładniejszego sprawdzenia, m.in. zachowanie polimerów w promieniowaniu UV, podwyższonej temperaturze czy zmienionej wilgotności. Ważne jest przetestowanie dotychczasowych rozwiązań zarówno w różnych warunkach, jak i w dłuższym czasie. Badania takie można przeprowadzić przy użyciu komory klimatycznej, do której na kilka tygodni można wstawić próbkę materiału i ją obserwować. Na przykład żeby wykorzystać nasze materiały w folii na okna musimy popracować nad barwą, bo obecna, w odcieniach szarości, ogranicza widzialność – mówi dr Mazurkiewicz-Pawlicka. Chcemy też znaleźć nowe polimery, które mogłyby zostać użyte jako osnowa w naszych materiałach. Współpraca Zespół dr Mazurkiewicz-Pawlickiej tworzyli dr hab. Leszek Stobiński, dr Artur Małolepszy oraz grupa studentów wykonujących w ramach projektu prace inżynierskie i magisterskie. Swoją cegiełkę dołożyli też członkowie Koła Naukowego Inżynierii Chemicznej i Procesowej. Zrobili urządzenie, które mierzy efektywność naszych folii – opowiada dr Mazurkiewicz-Pawlicka. Składa się z lampy emitującej promieniowanie podczerwone i czujnika, który mierzy, o ile stopni udało się obniżyć temperaturę. W ramach IR-GRAPH naukowcy z PW ściśle współpracowali z Tatung University na Tajwanie. Korzystali także ze wsparcia Wydziału Fizyki Uniwersytetu Warszawskiego. Prof. Dariusz Wasik, Dziekan Wydziału i dr hab. Andrzej Witowski są specjalistami w fizyce ciała stałego i wykonali dla nas pomiary spektrometryczne – mówi dr Mazurkiewicz-Pawlicka. Dlaczego ekranować podczerwień? Grafen kojarzony jest przede wszystkim z zastosowaniami w elektronice i automatyce. Wykorzystanie go do ekranowania promieniowania nie jest jeszcze tak rozpowszechnione. Są doniesienia literaturowe, że grafen ekranuje promieniowanie elektromagnetyczne – opowiada dr Mazurkiewicz-Pawlicka. Jest to szeroko badane pod kątem promieniowania mikrofalowego, a ostatnio też terahercowego, głównie w zastosowaniach militarnych. Pomyśleliśmy, żeby sprawdzić właściwości grafenu dla promieniowania podczerwonego, bo na ten temat wiadomo niewiele. Promieniowanie podczerwone charakteryzuje się długością fal między 780 nanometrów a 1 milimetr. Wspólnie ze światłem widzialnym i promieniowaniem UV tworzy spektrum promieniowania słonecznego. W nadmiarze ma ono negatywny wpływ na naszą skórę. A aż około 50% tego promieniowania, które dociera do powierzchni Ziemi, stanowi właśnie podczerwień (odczuwana w postaci ciepła). Dlatego tak ważne jest jej ekranowanie. « powrót do artykułu-
- grafen
- tlenki grafenu
- (and 6 more)
-
Grafen ma wiele zalet i jedną poważną wadę – brak pasma wzbronionego, przez co nie nadaje się do użycia w roli półprzewodnika. Możliwe jest jednak sztuczne wytworzenie pasma wzbronionego w grafenie poprzez dołączenie do niego atomów wodoru. Naukowcy z Göttingen i Pasadeny zarejestrowali właśnie jedną z najszybciej przebiegających reakcji chemicznych, jakie kiedykolwiek badano – niezwykły obraz atomów wodoru łączących się z grafenem. Uczeni bombardowali grafen atomami wodoru. Wodór zachowywał się nieco inaczej, niż się spodziewaliśmy, mówi Alec Wodtke z Wydziału Dynamiki Powierzchni Instytutu Chemii Biofizycznej im. Maksa Plancka i profesor Instytutu Chemii Fizycznej z Uniwersytetu w Göttingen. Zamiast natychmiast odlatywać od grafenu, atomy wodoru na chwilę przyklejały się do atomów węgla i dopiero później się od nich odbijały. Tworzyły czasowe wiązanie chemiczne, wyjaśnia. Naukowców zaintrygowało jeszcze jedno zjawisko. Otóż atomy wodoru miały dużą energię przed spotkaniem z grafenem. Gdy zaś go opuszczały ich energia była znacznie niższa. Jej większość traciły podczas zderzenia, lecz nie było jasne, co się z tą energią stało. Naukowcy z Göttingen i ich koledzy z Caltechu (California Institute of Technology), chcąc wyjaśnić zagadkę zaginionej energii, opracowali model teoretyczny, który przetestowali na komputerze, a uzyskane wyniki porównali z wynikami eksperymentów. Jako, że okazały się one zgodne, naukowcy mogli odtworzyć to, co w ciągu femtosekund zachodziło pomiędzy węglem a wodorem. To wiązanie chemiczne istnieje przez około 10 femtosekund. To jedna z najszybszych bezpośrednio zaobserwowanych reakcji chemicznych, mówi Alexander Kandratsenka z Göttingen. W ciągu tych 10 femtosekund atom wodoru przekazuje niemal całą swoją energię atomowi węgla w grafenie. Prowadzi do do powstania fali dźwiękowej, która rozprzestrzenia się na zewnątrz od miejsca, w którym atomy się zetknęły. Przypomina to propagację fali powstającej po wrzuceniu kamienia do wody, wyjaśnia uczony. To między innymi dzięki tej fali dźwiękowej atom wodoru łatwiej niż przypuszczano łączy się z atomem węgla. Uzyskane wyniki mogą mieć fundamentalne znaczenie dla przemysłu i możliwości wykorzystania grafenu w roli półprzewodnika. Jednak same eksperymenty wymagały olbrzymiej wiedzy, zasobów i odpowiedniego sprzętu. Musieliśmy prowadzić je w warunkach próżni niemal doskonałej, by utrzymać grafen w czystości, mówią badacze. Ponadto samo odpowiednie przygotowanie atomów wodoru wymagało wykorzystania olbrzymiej liczby systemu laserowych. « powrót do artykułu
-
Nowy sposób na wytworzenie maleńkich struktur płaskiego grafenu zademonstrował zespół z Polski i Niemiec w Science. Płatki grafenu wytworzono po raz pierwszy nie na metalu, a od razu na podłożu z półprzewodnika. To nowe perspektywy dla zastosowań, między innymi w elektronice i fotonice. Badania przeprowadził zespół badaczy fizyków z Uniwersytetu Jagiellońskiego i chemików z Uniwersytetu w Erlangen i Norymberdze. Grafen to atomowej grubości płaska struktura złożona z atomów węgla ułożonych w sieć przypominającą plaster miodu. Taka cienka i niewidoczna gołym okiem węglowa „kartka” jest niezwykle wytrzymała, elastyczna, przezroczysta, przewodzi ciepło i prąd. Kiedy w 2010 r. za odkrycie grafenu przyznano Nagrodę Nobla, tysiące naukowców i przedsiębiorców ruszyły, aby szukać zastosowań dla tego materiału. Potem sprawa przycichła... Czyżby nie było pomysłu, jak wykorzystać ten materiał? Pytany o to prof. Marek Szymoński z Uniwersytetu Jagiellońskiego mówi: Grafen sam w sobie ma rewelacyjne właściwości, ale z punktu widzenia zastosowań to właściwie tylko przewodząca, bardzo cienka ‘kartka’. Tymczasem np. dla elektroniki cyfrowej bardziej interesującymi materiałami są tzw. materiały z przerwą wzbronioną - do nich należą półprzewodniki. To materiały, przez które prąd przepłynie, ale tylko, jeśli dostarczy się nośnikom ładunku odpowiednią energię – a więc np. przyłożone napięcie przekroczy odpowiednią wartość. Przy mniejszym napięciu działają jak izolator – nie przepuszczają prądu. Dzięki temu można na urządzeniach półprzewodnikowych wykonywać m.in. operacje logiczne – jeśli prąd przepłynął – dostajemy wartość 1, jeśli nie – 0. Najbardziej znanym półprzewodnikiem jest krzem, którego znaczenia w przemyśle komputerowym (słynna Dolina Krzemowa) trudno przecenić. Miniaturyzacja urządzeń elektronicznych jednak postępuje i naukowcy zastanawiają się nad materiałami, z których można by zbudować urządzenia o działaniu podobnym do półprzewodnikowych, ale miałyby wielkość zaledwie kilku nanometrów (nanometr to milionowa część milimetra). A w takiej skali tradycyjne urządzenia półprzewodnikowe nie najlepiej się spisują. Naukowcy szukają więc nowych materiałów o odpowiednich właściwościach. I tutaj właśnie nadzieją są nanometrowej wielkości struktury grafenowe o kształcie płatków lub wstążek. Okazuje się bowiem, że odpowiednio małym strukturom grafenu można nadać właściwości pozwalające na ich wykorzystanie do zbudowania elementarnych urządzeń elektronicznych – na przykład bramek logicznych lub nanotranzystorów. Problemem jest jednak to, jak precyzyjnie produkować takie niewidoczne gołym okiem płatki grafenu. Trudno tu przecież używać nanonożyczek i z atomową precyzją wycinać z kartek grafenu niewidoczne płatki. Naukowcy zastanawiają się więc nad odwrotnym podejściem: jak z mniejszych związków organicznych, na przykład pojedynczych molekuł aromatycznych, układać grafenowe puzzle. I tu właśnie z pomocą przychodzą badania prof. Konstantina Amsharova z FAU w Niemczech oraz polskiego zespołu. Wyniki tych badań ukazały się w styczniu w prestiżowym czasopiśmie Science. Naukowcy pokazali, jak w sprytny sposób przeprowadzić reakcję chemiczną, by z łatwych do kontrolowania półproduktów (tzw. prekursorów) produkować maleńkie płatki grafenu. Przedstawiony przez nich sposób działa sekwencyjnie - naukowcy nazywają to "nanozippingiem" i porównują tę reakcję do działania suwaka. W dodatku w doświadczeniu – przeprowadzonym w Krakowie – nanopłatki grafenu udało się wyprodukować od razu na podłożu z półprzewodnika, co jest istotnym nowym osiągnięciem. Nasza praca jest pierwszą, która donosi o w pełni kontrolowanej syntezie nanografenu na powierzchniach niemetalicznych – informuje w rozmowie z PAP pierwszy autor pracy dr Marek Kolmer, który obecnie realizuje staż podoktorski w Oak Ridge, USA. Prof. Marek Szymoński, który także jest wśród autorów publikacji, tłumaczy, że podstawową cegiełką do budowy płatków w ich doświadczeniu są aromatyczne struktury węglowe zbudowane z połączonych po jednym wiązaniem pierścieni benzenowych zakończonych na brzegach atomami wodoru lub fluoru. Jeśli jeden z fluorów połączy się z najbliżej położonym atomem wodoru z sąsiedniego pierścienia – a to można kontrolować na przykład przez podnoszenie temperatury – zaczyna się sekwencja reakcji pomiędzy kolejnymi pierścieniami benzenowymi. I tak „ząbek po ząbku”, para po parze, jak w zamku błyskawicznym, pierścienie benzenowe będą się ze sobą łączyć w strukturę nanografenu – mówi prof. Szymoński. Dr Marek Kolmer, tłumaczy, że w wyniku sześciu sekwencyjnie aktywowanych reakcji z prekursora powstaje molekuła nanografenu licząca 42 atomy węgla. To puzzel, który może zostać wykorzystany do produkcji większych, atomowo zdefiniowanych struktur – opowiada. Dotąd struktury grafenowe z prekursorów molekularnych wytwarzano na podłożach z metali takich jak złoto, srebro czy miedź. Metale te są jednak przecież świetnymi przewodnikami. Aby sprawdzić, jak wytworzone nanocząstki grafenu spisują się jako materiały elektroniczne, płatki trzeba oderwać i przenieść je inne podłoże, np. z półprzewodnika. A wtedy istnieje ryzyko, że taki atomowo zdefiniowany układ ulegnie modyfikacji. Tymczasem niemiecko-polskiemu zespołowi udało się wyprodukować płatki nanografenu od razu na podłożu z dwutlenku tytanu (rutylu), który jest półprzewodnikiem. Dr Kolmer tłumaczy, że rutyl jest kluczowy do przeprowadzenia reakcji chemicznej, która nie zajdzie na podłożu z miedzi czy złota. Badacze spodziewają się jednak, że nanografen tą metodą uda im się wytwarzać na innych półprzewodnikach i izolatorach. « powrót do artykułu
-
- grafen
- Uniwersytet Jagielloński
-
(and 1 more)
Tagged with:
-
IBM pokazał najszybszy grafenowy tranzystor. Błękitny Gigant pobił tym samym swój własny rekord sprzed roku, kiedy to zaprezentowano tranzystor pracujący z prędkością 100 GHz. Najnowsze działo IBM-a jest taktowane zegarem o częstotliwości 155 GHz. Yu-Ming Lin z IBM-a powiedział, że badania nad nowym grafenowym tranzystorem dowiodły, iż możliwe jest produkowanie tanich urządzeń tego typu za pomocą standardowych technologii wykorzystywany przy produkcji półprzewodników. To z kolei oznacza, że komercyjna produkcja grafenowej elektroniki może rozpocząć się w stosunkowo niedługim czasie.
- 24 replies
-
- tranzystor
- grafen
-
(and 1 more)
Tagged with:
-
Pojawienie się materiałów grubości jednego atomu, a zatem dwuwymiarowych, zrewolucjonizuje elektronikę i technologie związane z przechowywaniem energii. Taka rewolucja jest możliwa dzięki ostatnim pracom uczonych z Oxford University i Trinity College Dublin. Naukowcy odkryli metodę na tworzenie dwuwymiarowych płacht z najróżniejszych materiałów. Nowa metoda jest prosta, szybka i tania oraz nadaje się do zastosowania na skalę przemysłową. Obecnie najbardziej znanym materiałem o grubości pojedynczego atomu jest grafen. Każda milimetrowa warstwa grafitu składa się z około 3 milionów warstw grafenu. Ze względu na swoje niezwykłe właściwości elektryczne grafen przyciągnął uwagę całego świata, a jego wynalazcy otrzymali Nagrodę Nobla - mówi doktor Valeria Nicolosi z Oxford University, która wraz z profesorem Jonathanem Colemanem z Trinity College kierowała zespołem badawczym. W rzeczywistości setki innych materiałów składają się z warstw i umożliwią nam stworzenie potężnych nowych technologii - dodaje. Profesor Coleman zauważa, że właściwości chemiczne i elektroniczne tych nowych materiałów powodują, że świetnie nadają się one do tworzenia nowych urządzeń elektrycznych, niezwykle wytrzymałych kompozytów, można je wykorzystać do tworzenia i przechowywania energii. Tego typu materiałów znamy w tej chwili ponad 150. Są wśród nich azotek boru, disiarczek molibdenu czy disiarczek wolframu. Wszystkie one, w zależności od składu chemicznego i ułożenia atomów, mogą mieć właściwości metaliczne, półmetaliczne czy półprzewodzące. Uczeni od dawna próbowali uzyskać z nich warstwy grubości pojedynczych atomów, jednak wszelkie proponowane metody były niezwykle drogie, praco- i czaso chłonne, a uzyskany materiał był bardzo nietrwały i nie nadawał się do większości zastosowań. Nasza metoda jest tania i wysokowydajna. W ciągu kilku godzin, mając do dyspozycji 1 miligram materiału wyjściowego możemy stworzyć miliardy nanopłacht - mówi doktor Nicolosi. Uzyskane płachty można następnie natryskiwać na różne podłoża, w tym na krzem.
- 5 replies
-
- disiarczek molibdenu
- azotek boru
- (and 4 more)
-
Badacze z Rice University poinformowali o opracowaniiu nowej metody produkcji grafenu z bogatych w węgiel substancji, takich jak np. cukier. Opracowali oni jednoprzebiegowy proces odbywający się w niższej niż dotychczas temperaturze, co ułatwia cały proces produkcyjny. Chemik James Tour i jego zespół twierdzą, że duże płachty grafenu wysokiej jakości mogą być tworzone w temperaturze już 800 stopni Celsjusza z wielu źródeł zawierających węgiel. Dotychczas do ich powstania wymagana była temperatura rzędu 1000 stopni. Przy 800 stopniach krzemowe podłoże [na którym powstaje grafen - red.] pozostaje przydatne w elektronice, podczas gdy w 1000 stopni traci ono ważne domieszki - mówi Tour. Autorem odkrycia jest student Toura, Zhengzong Sun, który zauważył, że nałożenie zawierających w węgiel substancji na podłoże bogate w miedź czy nikiel pozwala produkować jedno-, dwu- i wielowarstwowe płachty grafenu. Proces taki nadaje się też do tworzenia grafenu wzbogacanego domieszkami, co umożliwia manipulowanie jego elektronicznymi i optycznymi właścicielami. Najpierw Sun nałożył na miedziane podłoże szkło akrylowe (pleksiglas - PMMA). Po podgrzaniu w warunkach niskiego ciśnienia i obecności wodoru i argonu z PMMA pozostał czysty węgiel ułożony w jednoatomową warstwę. Okazało się również, że manipulując przepływem gazów można kontrolować grubość grafenu uzyskiwanego z PMMA. Później student wraz z kolegami spróbował tego samego z wykorzystaniem... cukru. Miedzianą folę pokrył centymetrem kwadratowym cukru i poddał całość takiemu samemu procesowi, któremu poddawał PMMA. Spodziewał się, że uzyskany w ten sposób grafen będzie pełen defektów ze względu na strukturę substancji. Okazało się jednak, że defektów jest na tyle mało, iż materiał może zostać w praktyce wykorzystany. Procesu takiego nie udało się natomiast przeprowadzić w sytuacji, gdy podłożem dla materiału z węglem był krzem lub tlenek krzemu. Jednak możliwe jest uzyskanie grafenu, jeśli krzem zostanie najpierw pokryty warstwą miedzi lub niklu.
- 1 reply
-
- Zhengzong Sun
- James Tour
-
(and 3 more)
Tagged with:
-
Podczas syntezy grafenu wykorzystuje się proces chemicznej redukcji tlenku grafenu (GO). Wymaga on wystawienia GO na działanie hydrazyny. Ten sposób produkcji ma jednak poważne wady, które czynią jego skalowanie bardzo trudnym. Opary hydrazyny są bowiem niezwykle toksyczne, zatem produkcja na skalę przemysłową byłaby niebezpieczna zarówno dla ludzi jak i dla środowiska naturalnego. Naukowcy z japońskiego Uniwersytetu Technologicznego Toyohashi zaprezentowali bezpieczne, przyjazne dla środowiska rozwiązanie problemu. Zainspirowały ich wcześniejsze badania wskazujące, że tlenek grafenu może działać na bakterie jak akceptor elektronów. Wskazuje to, że bakterie w procesie oddychania lub transportu elektronów mogą redukować GO. Japońscy uczeni wykorzystali mikroorganizmy żyjące na brzegach pobliskiej rzeki. Badania przeprowadzone przy wykorzystaniu zjawiska Ramana wykazały, że obecność bakterii rzeczywiście doprowadziła do zredukowania tlenku grafenu. Zdaniem Japończyków pozwala to na opracowanie taniej, bezpiecznej i łatwo skalowalnej przemysłowej metody produkcji grafenu o wysokiej jakości.
- 1 reply
-
- grafen
- tlenek grafenu
-
(and 2 more)
Tagged with:
-
Grafen ma wiele niezwykłych właściwości, jednak nie jest materiałem piezoelektrycznym. Piezoelektryczność to właściwość niektórych materiałów, polegająca na tym, że przy zginaniu, ściskaniu i skręcaniu materiały te produkują ładunki elektryczne. Występuje też zależność odwrotna - pole elektryczne wywołuje odkształcenie materiału piezoelektrycznego, dając nad nim duża kontrolę. W ACS Nano ukazał się artykuł, w którym dwóch inżynierów ze Stanford University opisuje, w jaki sposób nadali grafenowi właściwości piezoelektryczne. Fizyczne deformacje, jakie możemy tworzyć, są wprost proporcjonalne do przyłożonego pola elektrycznego, co daje nam niedostępną wcześniej możliwość kontrolowania elektroniki w nanoskali - stwierdził Evan Reed, szef Materials Computation and Theory Group i główny autor badań. To pozwala mieć nadzieję, na zrealizowanie koncepcji ‚straintroniki’, zwanej tak ze względu na sposób, w jaki pole elektryczne w sposób przewidywalny zmienia kształt sieci krystalicznej węgla - dodał uczony. Mitchell Ong, autor artykułu w ACS Nano, uważa, że „piezoelektryczny grafen może może zapewnić niedostępny dotychczas stopień elektrycznej, mechanicznej i optycznej kontorli nad różnymi urządzeniami, od ekranów dotykowych po nanotranzystory“. Za pomocą symulacji przeprowadzanych na superkomputerach, inżynierowie sprawdzali skutki domieszkowania grafenu po jednej lub obu stronach sieci krystalicznej. Modelowano domieszkowanie litem, wodorem, potasem i fluorem oraz ich kombinacjami. Wyniki zaskoczyły naukowców. Sądziliśmy, że pojawi się efekt piezoelektryczny, ale będzie on słaby. Tymczasem jest on podobny do występującego w tradycyjnych materiałach - mówi Reed.
-
- grafen
- piezoelektryczność
-
(and 6 more)
Tagged with:
-
O grafenie piszemy od lat, a przed kilkunastoma miesiącami informowaliśmy o powstaniu grafanu. Teraz do rodziny dołączył trzeci jej członek - grafyn. Symulacje komputerowe przeprowadzone przez niemieckich uczonych wskazują na możliwość istnienia pojedynczej warstwy atomów węgla, które jednak nie muszą być ułożone w kształcie sześciokąta, a mogą przyjmować bardzo różne formy. Nowy materiał może być zatem znacznie bardziej elastyczny niż grafen. Jak pamiętamy, energia elektronów poruszających się w grafenie jest wprost proporcjonalna do momentu pędu. Gdy energie takich elektronów przedstawimy na trójwymiarowym wykresie otrzymamy stożek Diraca. Te unikatowe właściwości grafenu powodują, że elektrony zachowują się w nim tak, jakby nie miały masy, co pozwala im na poruszanie się z niezwykle dużą prędkością, a to może być bardzo pożądaną cechą np. w elektronice. Grafyn tym różni się od grafenu, który ma pojedyncze lub podwójne wiązania, iż tworzy podwójne i potrójne wiązania, a atomy węgla nie układają się heksagonalnie. Niemieccy uczeni, wśród nich chemik Andreas Görling z Uniwersytetu Erlangen-Nuremberg, prowadzili komputerowe symulacje trzech różnych wzorców, w jakie mogą układać się atomy węgla w grafynie i odkryli, że we wszystkich mamy do czynienia ze stożkiem Diraca. Jednak, co ważniejsze, okazało się, że jeden z badanych wzorów 6,6,12 grafyn, w którym atomy węgla charakteryzuje prostokątna symetria, przewodzi elektrony tylko w jednym kierunku. Taki materiał nie potrzebowałby domieszkowania innymi pierwiastkami, by wykazywać właściwości pożądane w elektronice. W przeszłości uzyskiwano już niewielkie skrawki grafynu. Teraz niemieckie badania dowiodły, że warto pracować nad tym materiałem i różnymi jego odmianami.
-
Uczeni z University of Manchester wpadli na pomysł, który przybliża moment praktycznego wykorzystania grafenu do budowy komputerów. Grafen jest bardzo obiecującym materiałem, ale sprawia on spory kłopot, gdy... przewodzi elektrony zbyt dobrze. To powoduje, że dochodzi do olbrzymich wycieków prądu z grafenowych urządzeń. Co prawda specjaliści zaprezentowali już pojedyncze grafenowe tranzystory, które pracują z częstotliwością nawet do 300 GHz, ale wycieki prądu powodują, że tranzystory takie nie mogą być zbyt gęsto upakowane. Natychmiast uległyby bowiem stopieniu. Naukowcy z Manchesteru zaproponowali interesujące rozwiązanie problemu. Ich zdaniem należy stworzyć grafenową diodę tunelującą. W diodzie takiej elektrony tunelują się pomiędzy metalicznymi warstwami za pośrednictwem rozdzielającego je dielektryka. Doktor Leonid Ponomarenko, który stał na czele zespołu badawczego, mówi: Stworzyliśmy projekt nowej grafenowej elektroniki. Nasze tranzystory pracują dobrze. Myślę, że można je jeszcze udoskonalić, zminiaturyzować i przystosować do pracy z zegarami taktowanymi z częstotliwościami subterahercowymi. Nowe podejście zakłada połączenie warstw grafenu, azotkuboru i disiarczku molidenu. Tranzystory układa się warstwa po warstwie. Profesor Geim, jeden z wynalazców grafenu, mówi, że projekt takiego tranzystora to bardzo ważne wydarzenie, ale jeszcze ważniejsze jest prawdopodobnie wykazanie, iż można w skali atomowej układać warstwy. Drugi wynalazca grafenu, profesor Novoselov dodaje, iż tranzystor tunelowy to jeden z niewyczerpanej gamy urządzeń, które mogą powstać za pomocą układania warstwami.
-
Niewykluczone, że grafen może posiadać niezwykłą właściwość zwaną nadprzewodnictwem chiralnym. To nadprzewodnictwo, które działa tylko w jednym kierunku, zatem przepływ prąd odbywałby się bez oporów w jedną stroną, a w drugą napotykałby na opór. Nadprzewodnictwo chiralne zaburza parzystość T, może więc zostać wykorzystane np. w komputerach kwantowych. Od pewnego czasu naukowcy przypuszczają, że tego typu nadprzewodnikiem może być też rutenian strontu (Sr2RuO4), jednak hipoteza ta nigdy nie została potwierdzona eksperymentalnie. Teraz w Nature Physics opublikowano artykuł, którego autorzy - Rahul Nandkishore, L. S. Levitov oraz A. V. Chubukov - opisują metodę uczynienia z grafenu nadprzewodnika chiralnego. Ich zdaniem tego typu właściwości grafen będzie wykazywał po wprowadzeniu doń domieszek. Grafen jest bardzo dobrym półprzewodnikiem, elektrony poruszają się w nim bardzo swobodnie, jednak swoboda ta jest zależna od kierunku elektronu względem heksagonalnej siatki, jaką tworzą atomy węgla. Nandkishore, Levitov i Chubukov twierdzą, że domieszkując grafen tak, jak domieszkuje się inne półprzewodniki, można nadać mu właściwości nadprzewodnika. Podobnie jak w innych materiałach nadprzewodnictwo pojawi się w grafenie w niskich temperaturach, jednak działa ono w inny sposób. Zwykle niskie temperatury powodują, że wskutek drgań sieci krystalicznej elektrony oddziałują na siebie, tworząc pary Coopera. To właśnie one są nośnikami prądu w nadprzewodnikach. Tymczasem z rozważań wspomnianych naukowców wynika, że struktura grafenu i występujące w niej różnice w przepływie elektronów umożliwiają powstanie nadprzewodnictwa nawet bez występowania typowych dla innych materiałów zjawisk. Interakcja pomiędzy elektronami powoduje wzbudzenie sieci krystalicznej w taki sposób, że drgania nie rozchodzą się na podobieństwo fali powstałych po wrzuceniu kamienia do wody, ale przypominają płatki kwiatu, rozchodzące się promieniście od środka. Właściwości tych drgań są ściśle związane z kierunkiem ich rozchodzenia się, co oznacza, że są one chiralne i właściwości nadprzewodzące będą wykazywane w jednym kierunku, ale nie w przeciwnym. Pozostaje zatem przetestować tę teorię w laboratorium. Z domieszkowaniem grafenu nie powinno być najmniejszych kłopotów, gdyż naukowcy wzbogacali już grafen atomami wapnia i potasu nie niszcząc przy tym struktury jego sieci krystalicznej.
- 5 replies
-
- grafen
- nadprzewodnik chiralny
-
(and 1 more)
Tagged with:
-
Szwajcarscy uczeni z École Polytechnique FÉdÉrale de Lausanne (EPFL), którzy na początku bieżącego roku poinformowali o świetnych właściwościach molibdenitu, materiału mogącego stać się konkurencją dla krzemu i grafenu, właśnie zaprezentowali pierwszy układ scalony zbudowany z tego materiału. Zbudowaliśmy prototyp, umieszczając od dwóch to sześciu tranzystorów i udowadniając, że możliwe jest przeprowadzenie podstawowych operacji logicznych. To dowodzi, że można zbudować większy układ - mówi profesor Andras Kis, dyrektor Laboratorium Nanoskalowych Struktur i Elektroniki (LANES). Uczony wyjaśnia, że molibdenit umożliwia budowanie mniejszych tranzystorów niż krzem. Obecnie nie można tworzyć warstw krzemu cieńszych niż 2 nanometry, gdyż istnieje ryzyko ich utlenienia się, co negatywnie wpływa na właściwości elektryczne materiału. Z molibdenitu można tworzyć efektywnie działającą warstwę o grubości zaledwie 3 atomów. Jest ona bardzo stabilna i łatwo w niej kontrolować przepływ elektronów. Ponadto molibdenitowe tranzystory są bardziej wydajne. Przełączają się też szybciej niż tranzystory krzemowe. Jak informuje profesor Kis, molibdenit równie efektywnie jak krzem wzmacnia sygnał elektryczny. Sygnał wyjściowy może być czterokrotnie silniejszy niż sygnał wejściowy. A to oznacza, że możliwe jest produkowanie bardzo złożonych układów. Dla grafenu ta wartość wynosi około 1. Poniżej tej wartości sygnał wyjściowy będzie zbyt słaby, by pobudził do pracy następny, podobny układ - mówi Kis. Molibdenit, w przeciwieństwie do krzemu, ma interesujące właściwości mechaniczne, które być może pozwolą na produkowanie elastycznych układów scalonych.
- 3 replies
-
- molibdenit
- układ scalony
- (and 4 more)
-
Grafen zyskał właśnie konkurenta do miana „nadziei elektroniki". Konkurentem tym jest związek erbu, który ma niezwykle przydatne właściwości optyczne. Po pierwsze, erb emituje fotony o długości fali 1500 nanometrów, która to długość jest wykorzystywana do komunikacji optycznej. Pierwiastek działa więc jak wzmacniacz sygnału w światłowodach. Po drugie, erb absorbuje część światła słonecznego, która nie jest absorbowana przez krzem. To pozwoli na wykorzystanie go do polepszenia efektywności ogniw słonecznych. Oczywiście erb wykorzystywano już wcześniej, jednak dotychczas nie można było użyć go zbyt dużo, gdyż większa ilość erbu powodowała.... pogorszenie właściwości optycznych urządzeń, w których go stosowano. Najnowsze odkrycie pozwoli na nawet 1000-krotne zwiększenie ilości erbu w światłowodach, przełącznikach optycznych czy ogniwach słonecznych. Naukowcy z Arizona State University (ASU) stworzyli bowiem nowy związek - chlorek krzemianowy erbu. Gdy używamy tradycyjnych związków erbu do wzmocnienia sygnału w światłowodzie, erbu jest tam tak niewiele, że wzmocnienie uzyskiwane jest dopiero na długim odcinku. Zwykle nie stanowi to większego problemu, jednak powoduje, że erbu nie można wykorzystać w roli wzmacniacza sygnału w krótkich światłowodach, a zatem będzie on nieprzydatny jeśli np. wykorzystamy światłowody wewnątrz komputera. Teraz, dzięki nowemu związkowi, erb znajdzie zastosowanie i w takich miejscach. Erb zwiększy też efektywność krzemowych ogniw słonecznych. Krzem słabo absorbuje światło słoneczne o długości fali większej niż 1100 nanometrów. Dodanie erbu spowoduje, że dwa lub więcej fotony o małej energii zostaną zmienione w jeden foton niosący więcej energii i to taki foton zostanie zaabsorbowany przez krzem, co zwiększy efektywność ogrniwa. Co więcej, erb absorbuje też światło ultrafioletowe i emituje światło widzialne. To z jednej strony pozwoli jeszcze bardziej zwiększyć efektywność ogniw, a z drugiej przyda się do udoskonalenia LED-ów. Pożyteczne właściwości erbu znane są od dawna, jednak dotychczas były problemy z uzyskaniem odpowiedniej jakości materiału. Tradycyjne podejście zakładało wzbogacanie erbem krzemu czy innego materiału, z którego zbudowane było dane urządzenie. Problemem był fakt, że nie byliśmy w stanie wprowadzić wystarczającej liczby atomów erbu do kryształów, bez pogarszania ich właściwości optycznych, gdyż zbyt wiele materiału wzbogacającego powodowało, że zbijał się on w grupy, co źle wpływa na właściwości optyczne - mówi profesor Cun-Zhen Ning z ASU. Dzięki nowemu materiałowi możemy dodać 1000-krotnie więcej atomów erbu, co oznacza, że wiele urządzeń można będzie zintegrować w układzie scalonym - dodaje. Do odkrycia chlorku krzemianowego erbu doszło przypadkiem. Próbowaliśmy wzbogacić erbem krzemowe nanowłókna. Jednak zaskoczyły nas właściwości uzyskanego materiału. To był nowy materiał. Nie wiedzieliśmy, co to jest. W literaturze nie znaleźliśmy żadnych jego opisów. Ponad rok zajęło nam przekonanie się, że mamy nowy kryształ, którego nikt wcześniej nie wyprodukował - stwierdza Ning. Uczony dodaje, że wstępne badania wykazały, iż chlorek krzemianowy erbu może mieć wiele interesujących, nieodkrytych jeszcze, właściwości.
- 3 replies
-
- grafen
- chlorek krzemianowy erbu
-
(and 2 more)
Tagged with:
-
Na University of Cambridge powstała technika pozyskiwania wysokiej jakości grafenu w temperaturze ponaddwukrotnie niższej niż dotychczas. Osiągnięcie to znakomicie ułatwi zastosowanie grafenu w praktyce. Zespół pracujący pod kierunkiem Roberta Weatherupa i Bernharda Bayera nałożył cienką warstwę złota na nikiel, na którym wzrasta grafen. To pozwoliło obniżyć temperaturę, w której tworzony jest grafen do zaledwie 450 stopni Celsjusza. Obecnie najlepszą znaną metodą pozyskiwania wysokiej jakości grafenu jest osadzanie z fazy gazowej. W tym celu podłoże z niklu lub miedzi, które działa jak katalizator, poddaje się działaniu gazu zawierającego węgiel. W temperaturze ponad 1000 stopni Celsjusza dochodzi do osadzenia się warstwy węgla na podłożu. Powstaje grafen. Metoda taka nie jest jednak pozbawiona wad. Wysokie temperatury niszczą część materiałów, które są wykorzystywane w produkcji elektroniki, przez co nie można z grafenu bezpośrednio tworzyć układów scalonych. Tymczasem, jak odkryli brytyjscy uczeni, wystarczy do niklu dodać mniej niż 1% złota, by można było obniżyć temperaturę pracy z grafenem do 450 stopni Celsjusza. Co więcej, pozyskany w ten sposób grafen jest lepszej jakości. W tradycyjnej technice produkcji grafen pojawia się na całej powierzchni niklu i poszczególne kawałki tworzą się niezależnie. Z czasem powiększają się i łączą ze sobą, ale miejsca połączeń są mniej doskonałe niż pozostała powierzchnia grafenu i elektrony nie poruszają się nich równie swobodnie. Tymczasem złoto blokuje wzrost grafenu. Pozwala zatem otrzymywać jednolite płachty, które rosły przez dłuższy czas, ale jako że nie napotkały na swojej drodze innych skrawków grafenu, nie łączyły się z nimi i nie występują w nich „szwy". Złoto pozwala zatem nie tylko na pozyskanie grafenu w znacznie niższej temperaturze, ale również na produkcję materiału o lepszych właściwościach. Uczeni z Cambridge przeprowadzili przy okazji szczegółowe badania nad wzrostem grafenu. Dowiedzieli się, że do osadzania się grafenu nie dochodzi tylko w czasie, gdy podłoże jest schładzane oraz że na wzrost wpływa nie tylko powierzchnia katalizatora, ale też obszar poniżej. Grafen wciąż jest przedmiotem laboratoryjnych badań i nie trafił jeszcze na linie produkcyjne. Jednak dzień jego rynkowego debiutu jest coraz bliżej. Idealnie byłoby, gdyby grafen udało się produkować bezpośrednio na izolatorze. Obecnie trzeba go przenosić z podłoża, na którym jest tworzony, na podłoże, gdzie ma powstać obwód. Problem w tym, że izolatory słabo sprawdzają się w roli katalizatorów do pozyskiwania grafenu z fazy gazowej. Badania nad wzrostem grafenu to wciąż młoda dziedzina wiedzy, ale rozwija się bardzo szybko - stwierdził Weatherup.
-
Na Georgia Institute of Technology powstała technika tworzenia wysokiej jakości warstw epitaksjalnego grafenu na plastrach węgliku krzemu. Nowa technika polega na ścisłym kontrolowaniu ciśnienia gazowego krzemu. Obecnie uzyskuje się cienkie warstwy grafenu na węgliku krzemu w warunkach próżni, w temperaturze około 1500 stopni Celsjusza. To powoduje odparowanie krzemu i pojawienie się warstwy węgla. Jednak niekontrolowane parowanie prowadzi do uzyskania grafenu niskiej jakości. Precyzyjnie kontrolując tempo uwalniania się krzemu z plastra możemy kontrolować tempo produkcji grafenu. To pozwala nam na uzyskanie bardzo ładnych warstw epitaksjalnego grafenu - powiedział wynalazca nowej techniki, profesor Walt de Heer. Uczony wraz z zespołem rozpoczęli od umieszczenia plastra węgliku krzemu w grafitowym opakowaniu. Znajduje się w nim niewielki otwór, który pozwala na kontrolowanie tempa parowania krzemu, utrzymując parowanie i kondensację mniej więcej w równowadze. Wzrost epitaksjalnego grafenu jest możliwy albo w próżni, albo w obecności obojętnego gazu, takiego jak argon. Epitaksjalny grafen może stać się bazą dla nowej generacji wysoko wydajnych urządzeń tam, gdzie ich wyjątkowa wydajność usprawiedliwia wysoki koszt. Zdaniem de Heera w tańszych, mniej wydajnych urządzeniach nadal będzie dominował krzem.
-
- węglik krzemu
- krzem
-
(and 1 more)
Tagged with:
-
Od czasu odkrycia grafenu trwają prace nie tylko nad zbadaniem jego właściwości, ale również nad ich zmianą, nadaniem mu bardziej pożądanych cech. Jedną ze stosowanych metod jest domieszkowanie grafenu innymi pierwiastkami. Dotychczas jednak nie było wiadomo, co dzieje się w takim wzbogaconym grafenie. Naukowcy z Columbia University, koreańskiego Sejong University oraz SLAC National Accelerator Laboratory i Brookhaven National Laboratory połączyli siły by uzyskać szczegółowy obraz grafenu i wprowadzonych doń obcych atomów. Za pomocą czterech różnych technik obrazowania sprawdzili, co się dzieje, gdy grafen zostanie wzbogacony azotem. Okazało się, że atomy azotu zajmują miejsce atomów węgla i że dodatkowy elektron wprowadzany wraz z azotem zmienia właściwości struktury elektronicznej grafenu, ale tylko w odległości około dwóch atomów węgla od atomu azotu. Okazuje się zatem, że możliwe jest precyzyjne kontrolowanie właściwości elektronicznych wzbogaconego grafenu, co jest niezwykle ważne, jeśli chcemy wykorzystywać go do produkcji elektroniki. Nie staramy się ulepszyć już istniejących systemów. Chcemy wyznaczyć nowe kierunki i, być może, umożliwić uzyskanie znacznie lepszej efektywności - stwierdziła Theanne Schiros z University of Columbia. Dodała, że badania te udowodniły, iż domieszkowanie grafenu jest dobrą strategią, mogącą doprowadzić do uzyskania materiału o pożądanych właściwościach. Naukowcy wykorzystali chemiczne osadzanie z fazy gazowej do uzyskania wzbogaconego grafenu, który umieszczany był na miedzianej folii. Część próbek badano na folii, a część po przeniesieniu grafenu na dwutlenek krzemu. Próbki badano za pomocą skaningowego mikroskopu tunelowego, spektroskopii ramanowskiej oraz promieni X. Spektroskopia ramanowska wykazała, że wprowadzenie azotu nie zaburzyło podstawowej struktury grafenu. Z kolei dzięki dwóm różnym technikom badania za pomocą promieni X stwierdzono, że azot leży równo w stosunku do atomów węgla i że łączy się z trzema atomami. Oznacza to, że zastąpił on dokładnie jeden atom węgla. W końcu mikroskop pokazał atomy azotu jako jasne punkty w strukturze, co pozwoliło je policzyć i stwierdzić, że azot stanowi od 0,23 do 0,35 procenta atomów węgla.
-
Grafenowe urządzenia wykorzystane w roli fotodetektorów mogą nawet stukrotnie przyspieszyć łącza internetowe. Do takich wniosków doszedł zespół naukowców z University of Manchester i University of Cambridge, wśród których byli odkrywcy grafenu, Andre Geim i Kostya Novoselov. Uczeni wykazali, że połączenie grafenu z metalicznymi nanostrukturami powoduje, że grafen dwudziestokrotnie lepiej wykrywa światło. Już wcześniej odkryto, że gdy do kawałka grafenu zostaną przymocowane, w niewielkiej odległości od siebie, dwa metalowe przewody, to po oświetleniu całość generuje prąd elektryczny. Co jednak ważniejsze, takie urządzenie pracuje niezwykle szybko, być może nawet 100 razy szybciej niż obecnie wykorzystywane fotodetektory. Dzieje się tak dzięki olbrzymiej mobilności i szybkości elektronów w grafenie. Dotychczas jednak poważną przeszkodą był fakt, że grafen absorbował jedynie 3% światła. Reszta impulsu przechodziła przez materiał nie wywołując żadnej reakcji elektronów. Naukowcy rozwiązali ten problem łącząc grafen z metalicznymi nanostrukturami. Te tzw. plazmoniczne nanostruktury dwudziestokrotnie zwiększyły absorpcję światła przez grafen nie wpływając jednocześnie negatywnie na inne jego właściwości. Naukowcy nie wykluczają, że uda się jeszcze bardziej poprawić właściwości grafenu. Grafen wydaje się naturalnym towarzyszem dla plazmoniki. Spodziewaliśmy się, że plazmoniczne nanostruktury mogą poprawić właściwości grafenu, ale miłym zaskoczeniem był fakt, że poprawa jest tak olbrzymia - mówi doktor Alexander Grigorenko, ekspert ds. plazmoniki. Grafen odkrył zatem przed nami swoje kolejne niezwykłe właściwości. Jak zauważył profesor Andrea Ferrari z Cambridge Engineering Department dotychczas skupiano się na właściwościach grafenu przydatnych w fizyce i elektronice. Teraz widzimy, że jego potencjał można wykorzystać też na polu fotoniki i optoelektroniki, gdzie połączenie unikatowych optycznych i elektronicznych właściwości grafenu z nanostrukturami plazmonicznymi pozwoli na wykorzystanie tego materiału nawet w przypadku braku pasma wzbronionego, w takich zastosowaniach jak fotodetektory czy ogniwa słoneczne.
-
- łącze internetowe
- internet
-
(and 3 more)
Tagged with:
-
Grafen to, według wielu specjalistów, materiał przyszłości elektroniki. Dwuwymiarowa struktura atomów węgla przewodzi prąd znacznie lepiej niż krzem i umożliwia budowanie superszybkich energooszczędnych tranzystorów. Najnowsze testy wykazały, że grafen jest też najbardziej wytrzymałym materiałem znanym ludzkości. Jeffrey Kysar i James Hone, profesorowie z Columbia University, testowali siłę wiązań atomowych grafenu. Najpierw w krzemowym plastrze wywiercili dziury, w których umieścili kawałki grafenu. Następnie użyli diamentowej sondy, próbując rozerwać wiązania atomowe w grafenie. Kysar i Hone mówią, że dotychczas nikt nie przeprowadzał podobnego eksperymentu, gdyż wymaga on użycia idealnych próbek grafenu, bez przerwanych wiązań czy brakujących atomów. Test wykazał niezwykłą wytrzymałość węglowego materiału. Naukowcy mówią, że gdyby wyprodukować grafenową płachtę i przykryć nią kubek, a następnie próbować zaostrzonym ołówkiem zrobić w płachcie dziurę, to grafen jest na tyle mocny, iż warstwa o grubości jednego atomu wytrzymałaby ciężar samochodu postawionego na ołówku. Oczywiście takiego eksperymentu nie uda się przeprowadzić, gdyż tak duży kawałek grafenu byłby pełen niedoskonałości, a więc znacznie słabszy, niż miniaturowa doskonała próbka. Wiedzieliśmy, że grafen do najbardziej wytrzymały materiał. Obecny eksperyment to potwierdził - mówi Konstantin Novoselov, wynalazca grafenu. Fakt, iż grafen jest tak wytrzymały, to kolejna dobra wiadomość dla przemysłu półprzewodnikowego. Materiały wykorzystywane w elektronice muszą bowiem mieć nie tylko dobre właściwości elektryczne ale i fizyczne. Powinny być wytrzymałe na ciepło i na siły, którym są poddawane podczas produkcji.
-
Międzynarodowy zespół korzystający ze Spitzer Space Telescope znalazł w kosmosie pierwsze ślady molekuły fullerenu C70 oraz, prawdopodobnie, wykrył obecność dwuwymiarowego C24, a zatem grafenu. Letizia Stanghelini i Richard Shaw z National Optical Astronomy Observatory w Tuscon pracujący pod kierunkiem Domingo Anibala Garcia-Hernandeza z Instytutu Astrofizyki z Wysp Kanaryjskich, stwierdzili, że fullereny C60, C70 oraz grafen C24 powstały w wyniku kolizji wiatrów słonecznych ze starych gwiazd w jednej z mgławic planetarnych. Wspomniana mgławica znajduje się w Małym Obłoku Magellana. Z tego, co obecnie wiemy dzięki symulacjom komputerowym fulleren C70 ma kształt podobny do piłki do rugby, a C60 - piłki do siatkówki. Co do obecności dwuwymiarowego C24 wciąż jeszcze brakuje ostatecznego potwierdzenia. Jeśli za pomocą badań spektroskopowych - a ich przeprowadzenie przy obecnym stanie techniki jest niemal niemożliwe - uda się potwierdzić obecność C24, będzie to pierwsze odkrycie grafenu w kosmosie - mówi Garcia-Hernandez. Naukowców najbardziej zadziwia fakt, że obecność wspomnianych postaci węgla wydaje się być niezależna od panującej temperatury, a o siły wiatru emitowanego przez mgławicę. Mały Obłok Magellana jest ubogi w metale, co stwarza dobre środowisko do powstawania mgławic planetarnych bogatych w węgiel. Tam z kolei powstają bardzo złożone molekuły węgla.
-
- fullereny
- Mały Obłok Magellana
-
(and 2 more)
Tagged with:
-
Grafen ma wiele zalet, ale też i jedną bardzo poważną wadę - nie występuje w nim pasmo wzbronione, bez którego jest nieprzydatny do zastosowań w elektronice. Dlatego też poszukiwana jest odpowiednia metoda tworzenia tego pasma. W półprzewodnikach występuje region energetyczny, zwany pasmem wzbronionym, gdzie nie są dostępne żadne stany elektroniczne [poziomy energetyczne - red.]. Mówi się, że gęstość nośnika wynosi tam zero. Jeśli mamy urządzenie podłączone do dwóch elektrod i występuje w nim pasmo wzbronione, to możemy spowodować, by płynął przez nie prąd o minimalnym napięciu. Brak pasma wzbronionego w grafenie oznacza, że nie można go „wyłączać". A to właśnie dzięki temu, iż możemy „włączać" i „wyłączać" prąd, możemy też kodować informacje w postaci 0 i 1. To wyjaśnia, dlaczego brak pasma wzbronionego to poważny wada, uniemożliwiające zastosowanie tego wyjątkowego materiału w wielu miejscach - mówi Foa Torres z Universidad Nacional de Cordoba w Argentynie. Torres i jego zespół, po przeanalizowaniu sposobu, w jaki laser wpływa na elektrony w grafenie, doszli do wniosku, że oświetlenie go światłem w średnich zakresach podczerwieni utworzy w nim pasmo wzbronione. Co więcej, jego właściwości można dobrać za pomocą polaryzacji światła. Wyobraźmy sobie elektron, który przesuwa się z lewej strony na prawą, w kierunku obszaru oświetlonego przez laser. Elektron wchodzi w interakcję z radiacją lasera, emitując lub absorbując fotony. Ta interakcja powoduje, że elektron jest odbijany lub rozpraszany, tak jakby trafił na ścianę - tutaj jest to pasmo wzbronione. W przeciwieństwie do normalnych pasm wzbronionych to jest tworzone dynamicznie - mówi Torres. Jego zdaniem interakcja pomiędzy strukturą grafenu a laserem daje nadzieję na uzyskanie egzotycznych stanów materii, takich jak izolatory topologiczne. Uczony uważa też, że wprowadzane laserowo pasmo wzbronione pozwoli na tworzenie nowych urządzenie optoelektronicznych. Tera Torres i jego współpracownicy chcą przeprowadzić eksperymenty, które mają zweryfikować prawdziwość ich założeń. Ich przeprowadzenie powinno być tym łatwiejsze, że z Argentyńczykami skontaktowały się już dwie znane grupy badawcze z USA i Hiszpanii, które są zainteresowane ich teorią. Drzwi zostały otwarte. Teraz wkraczamy na obiecującą terra incognita - mówi Torres.
- 8 replies
-
- pasmo wzbronione
- laser
-
(and 1 more)
Tagged with:
-
Świeżo upieczony magister Stony Brook University Qiang Zhu wraz z profesorem Artemem R. Oganovem i doktorem Andriejem O. Lyakhovem oraz naukowcami z hiszpańskiego Universidad de Oviedo przewidzieli teoretycznie istnienie trzech nowych form węgla. Węgiel to wyjątkowy pierwiastek. Dość wspomnieć że występuje on w tak różnych formach jak bardzo miękki grafit i niezwykle twardy diament. Tworzy też karbeny, fullereny czy dwuwymiarowy grafen. Wszystkie one mają bardzo interesujące właściwości, które już teraz wykorzystywane są na najróżniejsze sposoby. Spośród materiałów występujących na Ziemi najgęstsze upakowanie atomów występuje w jednej z odmian węgla - diamencie. Teraz wspomniani naukowcy przewidują, że można stworzyć trzy nowe struktury węgla, które będą o ponad 3% gęstsze od diamentu. Większa gęstość oznacza, że elektrony w takim materiale będą miały wyższą energię kinetyczną, a zatem będą poruszały się szybciej. Wyliczenia przeprowadzone przez uczonych pokazały, że nowe formy byłyby niemal tak twarde jak diament i charakteryzowałyby się przerwą energetyczną rzędu od 3 do 7,3 eV. Ta druga wartość to największa przerwa ze wszystkich znanych form węgla. Tak duży zakres przerw w przewidywanych materiałach oznacza, że będzie można dobierać ich właściwości elektroniczne. Wśród innych interesujących właściwości należy wymienić niezwykle małą ściśliwość, mniejszą nawet niż ma diament. Od diamentu różnią się też większym indeksem refrakcyjnym i silniejszym rozpraszaniem światła. Jeśli uda się zsyntetyzować przewidziane przez nas formy węgla, to odegrają one ważną rolę w technologii - stwierdził profesor Oganov.
-
Grafen to niezwykle obiecujący materiał, jednak jest bardzo wrażliwy na działanie czynników zewnętrznych, które mogą negatywnie wpływać na jego użyteczne właściwości. Dlatego też niezwykle ważnym jest znalezienie podłoża pozwalającego na pracę z grafenem i zachowanie jego interesujących nas cech. Nawet samo podłoże może niekorzystanie wpłynąć na grafen. Naukowcy z Wydziału Nauk materiałowych Lawrence Berkeley National Laboratory oraz profesorowie z University of California, Berkeley, połączyli siły w celu znalezienia najlepszego substratu dla grafenu. Każdy substrat wpływa na właściwości grafenu, zatem najlepszą metodą jego badania jest nałożenie go na substrat. Problem jednak w tym, że taki grafen jest niestabilny gdy zostanie poddany badaniu skaningowym mikroskopem tunelowym, gdyż grafenowa membrana może zacząć drgać pod wpływem końcówki mikroskopu - mówi Regis Decker z uniwersytetu w Hamburgu. W listopadzie ubiegłego roku naukowcy z Columbia University poinformowali, że grafen osadzony na podłożu z azotku boru cechuje się znacznie lepszą mobilnością elektronów niż grafen na dwutlenku krzemu. Dobry substrat dla grafenu powinien mieć szerokie pasmo wzbronione i nie powinien mieć wolnych wiązań, by nie zmieniać struktury elektronicznej grafenu. Musi być też bardzo płaski. Azotek boru to dobry kandydat - dodaje Decker. Związek ten ma i tę pożądaną cechę, że ułożenie atomów azotu i boru jest bardzo podobne do ułożenia węgla w grafenie. W celu połączenia grafenu z azotkiem boru najpierw za pomocą taśmy klejącej pobrano z azotku boru cienkie płatki, które osadzono na dwutlenku krzemu wyhodowanym na krzemie wzbogaconym innym pierwiastkiem. Działał on jak bramka. Grafen uzyskano metodą chemicznego osadzania z fazy gazowej na miedzi. Dzięki zastosowaniu Cu atomy węgla samodzielnie uformowały dwuwymiarową strukturę. Następnie grafen przeniesiono za pomocą miękkiego plastiku na azotek boru i uziemiono za pomocą elektrody z tytanku złota. Stworzono w ten sposób trzy próbki grafenu na azotku boru, który porównywano z grafenem na dwutlenku krzemu. Michael Crommie, szef jednej z grup badawczych wspomina, że już poprzednio testowano grafen na SiO2 i udowodniono, że gorsze od możliwych właściwości elektryczne grafenu nie wynikają z niedoskonałości czy uszkodzeń węglowej struktury, ale z zanieczyszczeń występujących w krzemie. Jednym z ich źródeł są zanieczyszczenia uwięzione pomiędzy grafenem a krzemem, podczas nakładania grafenu. Są wśród nich bąbelki powietrza czy molekuły wody. Gdy nakładaliśmy grafen na azotek boru szukaliśmy tych atmosferycznych zanieczyszczeń, ale nie stwierdziliśmy, by wywierały one jakiś wpływ. To dobra wiadomość, bo oznacza ona, że grafenowe urządzenia nie muszą być wykonywane w próżni - stwierdza Victor Brar. Szczegółowe badanie ujawniły szereg różnic pomiędzy grafenem na azotku boru i na dwutlenku krzemu. Grafen osadzony na pierwszym z tych materiałow jest znacznie bardziej płaski, a różnice w wysokości poszczególnych fragmentów nie przekraczają 40 pikometrów, gdy tymczasem w grafenie na dwutlenku krzemu sięgają one 1200 pikometrów. Pod względem elektronicznym różnice w gęstości ładunku w grafenie na azotku boru są niemal niezauważalne. Jak widać na załączonych grafikach, wyniki obu pomiarów - topograficznego i elektronicznego - są znacznie bardziej jednorodne w przypadku grafenu na azotku boru. W końcu bardzo istotna cecha, jaką jest pasmo wzbronione, które, przypomnijmy, naturalnie w grafenie nie występuje. Jako że siatka krystaliczna [azotku boru - red.] jest bardzo podobna do siatki grafenu, teoretycy przewidują, że powoduje ona pojawienie się pasma wzbronionego w grafenie - mówi Decker. System złożony z grafenu i azotku boru jest w wielu zastosowaniach znacznie lepszy od każdego innego systemu. Charakteryzuje się mniejszą liczbą zanieczyszczeń, znacznie bardziej równomiernym rozłożeniem ładunku, mniejszymi różnicami w wysokości i dużo lepszą stabilnością. Podsumowując, jest czystszym środowiskiem do badania właściwości grafenu. Azotek boru to naprawdę cudowny materiał dla praktycznych zastosowań grafenu - powiedział Michael Crommie.