Search the Community
Showing results for tags 'fulereny'.
Found 4 results
-
Profesor Wuzong Zhou ze szkockiego Uniwersytetu św. Andrzeja odkrył, że podczas palenia świecy w każdej sekundzie w płomieniu powstaje ok. 1,5 mln nanocząstek diamentu. Świece wynaleziono ponad 2 tys. lat temu w starożytnych Chinach, trzeba było jednak współczesnego zakładu z kolegą po fachu, by rozszyfrować tajemnice związane z ich spalaniem. Kolega z innego uniwersytetu powiedział do mnie: "Nikt, oczywiście, nie wie, z czego tak naprawdę składa się płomień świecy". Odpowiedziałem mu, że nauka może ostatecznie wyjaśnić wszystko, dlatego postanowiłem spróbować. Podczas eksperymentów profesorowi asystował student Zixue Su. Dzięki technice próbkowania wynalezionej przez Zhou naukowcy byli w stanie pobrać cząstki z centralnej części płomienia. Dodajmy, że wcześniej nikomu się to jeszcze nie udało. Okazało się, że znajdowały się tam cztery odmiany alotropowe węgla: diament, grafit, węgiel amorficzny i fulereny (choć część naukowców podkreśla, że w przypadku tych ostatnich poprawnie za odmianę alotropową należy uznać kryształ fuleryt, który składa się z cząsteczek fulerenów). To spore zaskoczenie, ponieważ każda z form powstaje zazwyczaj w innych warunkach. W dolnej części płomienia występują węglowodory, które po drodze na szczyt ulegają w wyniku różnych reakcji przekształceniu w dwutlenek węgla. Co się jednak dokładnie dzieje w międzyczasie, chemicy nie wiedzieli. Zhou i Su ustalili, że w centrum płomienia znajdują się nanocząstki diamentów, fulereny, a także grafit i węgiel amorficzny. Akademicy z University of St Andrews uważają, że ich odkrycie może pozwolić opracować tańsze i bardziej przyjazne dla środowiska metody pozyskiwania diamentów, które jak wiadomo, są cennym materiałem przemysłowym. Niestety, cząstki diamentu są spalane i przekształcane w dwutlenek węgla, ale nasze ustalenia na zawsze zmienią sposób, w jaki postrzegamy płomień świecy.
- 3 replies
-
- część centralna
- płomień
- (and 7 more)
-
Czy możliwe jest, żeby kopnięta sterta cegieł poukładała się sama, tworząc chodnik? Nie bardzo. Jeszcze mniej prawdopodobne jest, żeby cegły same utworzyły budynek. Tymczasem w skali nano jest to możliwe i uczyniono pierwszy krok ku takiej technologii. Cząsteczki chemiczne mają tę przewagę nad cegłami, że same się łączą w różne struktury. Trudno jednak zmusić je do tworzenia struktur takich, jakie byśmy chcieli. W dwóch wymiarach takie sztuczki już się udawały: kiedy w cienką warstwę jakiejś substancji wrzucamy odpowiednio dobraną cząsteczkę „gościnną", cząsteczki samorzutnie zorganizują się wokół takiego wtrącenia. Takie struktury jednak pozostawały zawsze dwuwymiarowe, a w nanotechnologii chcemy tworzyć struktury trójwymiarowe. Naukowcy z brytyjskiego University of Nottingham po czterech latach badań jako pierwsi osiągnęli przełom, zmuszając cząsteczki do samorzutnej organizacji w struktury trójwymiarowe. Udało im się to osiągnąć, pokrywając powierzchnię jednocząsteczkową warstwą molekuł kwasu tetrakarboksylowego i wrzucając w nią cząsteczki fulerenu C60(tzw. buckyball, sferyczna, pusta w środku cząsteczka złożona z 60 atomów węgla). Cząsteczki kwasu automatycznie organizują się wokół boków kulistego fulerenu. To sposób na tworzenie dodatkowych warstw cząsteczek i znaczący krok w kierunku samoorganizujących się nanostruktur. Nie jest to pierwsze osiągnięcie profesora Neila Champnessa i jego zespołu. Wcześniej odkryli oni, jak wykorzystać wiązania wodorowe do łączenia cząstek DNA w molekularne struktury, a niedawno opublikowali studium opisujące, jak nieregularne cząsteczki są adsorbowane na strukturach powierzchniowych. Studium na temat tworzenia trójwymiarowych, samoorganizujących się struktur ukazało się w prestiżowym periodyku Nature Chemistry.
- 2 replies
-
- Neil Champness
- samoorganizacja struktur 3D
- (and 6 more)
-
Całkiem niedawno odnaleziono w przestrzeni kosmicznej substancje organiczne, teraz dzięki teleskopowi Spitzera odnaleziono w kosmosie fulereny - wielkie cząsteczki węgla, które człowiek stworzył w laboratorium w latach osiemdziesiątych. Fulereny - nazwane tak na cześć architekta Richarda Buckminstera Fullera - to olbrzymie molekuły węgla, złożone z kilkudziesięciu lub nawet kilkuset atomów węgla, tworzące specyficzną, pustą w środku klatkę. Ich budowa daje im niezwykłe właściwości fizyczne i chemiczne. Podstawowy, najprostszy fuleren, zbudowany z 60 atomów węgla (C60) przypomina wyglądem klasyczną piłkę futbolową lub skonstruowaną przez Fullera kopułę. Istnienie takich cząstek w przestrzeni kosmicznej przewidywano już w latach siedemdziesiątych. W laboratorium otrzymano je właśnie przez symulację warunków panujących w gwiazdach. Jednak mimo dość powszechnego wytwarzania ich w sposób sztuczny, poszukiwania ich obecności w okolicach wygasłych gwiazd nie dawały jednoznacznych rezultatów. Na ziemi można je znaleźć na przykład w kopciu świecy lub meteorytach. Kosmiczne fulereny przypadkowo zidentyfikował Jan Cami, astronom z Uniwersytetu Zachodniego Ontario (University of Western Ontario) w Kanadzie. Spektroskopowe sygnatury odpowiadające fulerenom C60 i C70 znaleziono w mgławicy planetarnej Tc1, dzięki obserwacjom w podczerwieni przeprowadzonym przez teleskop Spitzera. Mgławice powstają z materii odrzuconej przez ginącą gwiazdę. Obecność w niej fulerenów może świadczyć o krótkim życiu gwiazdy, która dała jej początek. Obserwowane cząstki mają temperaturę pokojową, co sprzyja obserwacjom w podczerwieni. C60 i C70 (przypominający piłkę do rugby) są obecnie największymi molekułami, jakie odkryto w przestrzeni kosmicznej.
- 5 replies
-
- University of Western Ontario
- NASA - JPL
- (and 6 more)
-
Poszukiwanie nadprzewodników pracujących w jak najwyższych temperaturach to olbrzymia gałąź nauki. Marzeniem każdego badacza na tym polu jest wynalezienie materiału oferującego nadprzewodnictwo w temperaturze pokojowej, zamiast w ultraniskich temperaturach. Jednak każdy stopień wyżej to już sukces technologiczny, pozwalający potencjalnie obniżyć koszty funkcjonowania wielu urządzeń. A także, oczywiście, przybliżający nas do zrozumienia tego zjawiska. Odkrycie dokonane przez naukowców z uniwersytetów w Liverpoolu i Durham można chyba określić jako prawdziwy przełom. Otwiera ono drzwi do całkiem nowego podejścia. Cudownym środkiem był znów pierwiastek, który od parunastu lat rewolucjonizuje kolejne dziedziny technologii: węgiel. A dokładnie: fulereny, czyli stworzone z atomów węgla mikroskopijne sfery. Przy wykorzystaniu infrastruktury Europejskiego Ośrodka Synchrotronu Atomowego w Grenoble, a dokładniej urządzeń ISIS oraz Diamond z Rutherford Appleton Laboratory (RAL) stworzyli oni hybrydowy materiał złożony z atomów metali oraz najprostszych fulerenowych kulek C60 (złożonych z sześćdziesięciu atomów węgla, pierwszych, jakie odkryto i najpowszechniejszych). Stworzony materiał ścisnęli, powodując zmiany jego struktury, uzyskując jego nadprzewodnictwo w wysokiej temperaturze. Jak mówi dr Peter Baker, naukowiec operujący urządzeniem ISIS: odkrycie pozwala domniemać, że istnieje pewien ogólny trend w wysokotemperaturowych nadprzewodnikach. To wielki krok naprzód w w zrozumieniu podstaw działania nadprzewodników. Wiedza, jak właściwie funkcjonuje nadprzewodnictwo pozwoliłoby takie materiały tworzyć łatwiej, nadając im określone, pożądane przez nas właściwości. To otwarcie drzwi do nowych zastosowań i bezstratnego przesyłania energii. Przykładowe zastosowanie wynalazku to możliwość udoskonalenia konstrukcji aparatury do funkcjonalnego rezonansu magnetycznego (MRI). Taki aparat zawiera olbrzymi magnes, który dla zachowania nadprzewodnictwa musi być zanurzony w ciekłym helu, który utrzymuje temperaturę -270 stopni Celsjusza. Możliwość zrezygnowania z drogiego i kłopotliwego chłodzenia bardzo obniżyłaby koszty i zwiększyła dostępność tej diagnostyki. Ważną zaletą odkrycia, co podkreślają autorzy odkrycia Matthew Rosseinsky i Kosmas Prassides, jest możliwość łatwych prac nad różnymi wersjami nowego materiału. Eksperymentowanie z różnymi metalami i związkami metali, różnymi wersjami fulerenów, ciśnieniem i innymi parametrami być może pozwoli nie tylko odkryć lepsze materiały, ale zrozumieć: jak i dlaczego to właściwie działa.
- 6 replies
-
- University of Liverpool
- ESRF
- (and 5 more)