Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'fale dźwiękowe' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 4 wyniki

  1. Uczestnicy konferencji American Association for the Advancement of Science (AAAS) w Vancouver usłyszeli, że Stonehenge powstało w wyniku złudzenia słuchowego, wywołanego tańcem wokół dwóch osób grających np. na fletach czy gwizdkach. Pracujący na własną rękę dr Steve Waller twierdzi, że dla sztuki i architektury istotną inspiracją są nie tylko wrażenia wzrokowe, ale i słuchowe. Tłumaczy przy tym, jak ważną rolę odgrywa wzorzec interferencji fal dźwiękowych, który decyduje, jaka część melodii zostanie wytłumiona. Podczas jednego ze swoich eksperymentów Waller zawiązał dwóm grupom ochotników oczy i prowadził wokół dwóch magnetofonów. Później badanych poproszono, by się odwrócili i narysowali, co znajdowało się między nimi a źródłem dźwięku. W pracach pojawiały się filary, arkady i pionowe listwy. Sądzę, że to mogło się zdarzyć 5 tys. lat temu tak samo prosto, jak zademonstrowałem współcześnie. Naukowiec tłumaczy, że obracając się wokół grających instrumentów, tancerze natrafiali na miejsca wzmocnienia i wyciszenia dźwięków. Na miejscu, w Stonehenge, potwierdził swoje przypuszczenia, że kamienne obeliski dają taki właśnie efekt akustyczny. Waller chce opublikować artykuł na ten temat w fachowym piśmie. Jak każdy ojciec jest bardzo przywiązany do swojej teorii, dlatego broni jej, powołują się na legendę o dziewicach, które zostały przemienione w kamień podczas tańca do dźwięków magicznych dud. Co ciekawe, w drugiej historycznie wzmiance o Stonehenge kronikarz Geoffrey of Monmouth przytoczył w 1136 r. mit, zgodnie z którym kromlech jest pomnikiem tańca gigantów przeniesionym z Irlandii.
  2. Kałamarnice słyszą, ale zupełnie inaczej niż my, ludzie. Nie polegają na zmianach ciśnienia wywołanych przez fale dźwiękowe, lecz wyczuwają generowany przez nie ruch wody (The Journal of Experimental Biology). Wykrywają dźwięk samymi sobą, poruszając się w przód i w tył z falą dźwiękową - tłumaczy dr T. Aran Mooney, biolog morski z Woods Hole Oceanographic Institution, porównując zwierzę do owocu zatopionego w zastygłej galaretce. Gdy potrząsasz galaretką, przesuwa się cały blok, a wraz z nim owoc. Amerykanie badali kalmara loligo długopłetwego (Loligo pealeii). Okazało się, że potrafi on wykryć dźwięki o niskiej częstotliwości do 500 herców. Zidentyfikuje więc pomruk fal czy wiatr, ale już nie komunikaty zębowców, np. delfinów, których łupem pada. Teraz zespół próbuje lepiej zrozumieć jego mechanizm słyszenia. Jest taki pomysł, że skoro istoty te mają prymitywny zmysł słuchu, możemy je przecież wykorzystać w roli modelu ułatwiającego zrozumienie podstaw słyszenia lub utraty słuchu. W tym sensie opisywane badania miałyby odniesienie do ludzi. Kałamarnice słyszą dzięki parzystym statocystom. Są to pęcherzyki zbudowane z komórek ze skierowanymi do wewnątrz wiciami. W środku znajduje się statolit (grudka węglanu wapnia), drażniący wypustki podczas ruchu. Wtedy generowany jest sygnał elektryczny, który powiadamia mózg, że zwierzę wykryło dźwięk. U ludzi kamyczki błędnikowe, nazywane inaczej otolitami, drażnią komórki rzęsate narządu Cortiego. Drgania są przetwarzane na sygnał elektryczny. Mając na uwadze te podobieństwa, Mooney i inni zastosowali podczas eksperymentów z kalmarami loligo test do badania słuchu u ludzkich niemowląt. Zwierzęta znieczulano chlorkiem magnezu, a później odtwarzano im przez głośniki różne dźwięki i mierzono reakcje. Płytko pod skórą Mooney wszczepiał kalmarom elektrody. Umieszczał je w pobliżu wyjścia nerwu słuchowego ze statocysty. Kolejną elektrodę mocował na grzbiecie, by mierzyć bazową aktywność elektryczną. Następnie zanurzał L. pealeii w płytkim zbiorniku. Przez głośniki emitowano dźwięki z szerokiego zakresu częstotliwości. Stosowano po ok. 1000 powtórzeń dla każdej częstotliwości. Wyliczenie na podstawie 1000 pomiarów średniej pozwoliło wyeliminować naturalny losowy szum elektryczny - wyrażany w miliwoltach - który po każdym zasłyszanym dźwięku rozchodzi się w ciele wzdłuż nerwu. Okazało się, że kalamar loligo długopłetwy słyszy podobnie jak wiele ryb, które nie mogą się pochwalić rozwiniętymi umiejętnościami w tym zakresie. Amerykanie sądzą, że kałamarnice stanowią pokarm tak wielu różnych zwierząt – od fok, przez walenie, po ptaki – bo nie wiedzą, że ktoś na nie poluje. Badanie tomografem komputerowym wykazało jednak, że dysponują bronią zupełnie innego rodzaju. Ich gęstość jest niemal taka sama jak wody (w wodzie skaner w ogóle ich "nie widział"), funkcjonują więc, jakby przez cały czas korzystały z czapki-niewidki. Posługujące się echolokacją drapieżniki ich nie wykrywają. Wbrew pozorom ustalenie, czy kalmar loligo długopłetwy słyszy, było naprawdę ważne. Chodzi bowiem o wzrastające zaśmiecenie podwodnych ekosystemów hałasem. W oceanie jest coraz więcej dźwięków. Komercyjne łodzie, wydobycie ropy i gazu... Wszystko to generuje dużo hałasu. Dopóki nie wiadomo, czy dane zwierzę słyszy, nie da się stwierdzić, czy zjawiska te będą na nie wpływać. W przyszłości Mooney zamierza ustalić, jak ważny jest słuch dla kałamarnic. Czy posługują się tym zmysłem w celach komunikacyjnych lub w czasie migracji. Biolog chce ustawić głośniki w różnych miejscach, by mierząc reakcje nerwów, stwierdzić, czy wyczuwają, gdzie znajduje się źródło dźwięków. Ludzie, ryby i wiele innych zwierząt wykorzystuje komórki rzęsate do wykrywania dźwięku i ruchu. Są podobne do tych u klamarów, ale występują też pewne różnice. To prawdopodobnie podstawowa struktura, która wyewoluowała miliony lat temu, lecz później kręgowce i bezkręgowce obrały inne ścieżki rozwoju. Dowiadując się więcej o słyszeniu kałamarnic i ich komórkach rzęsatych, możemy dociec, co jest ważne w ludzkim słyszeniu i komórkach czuciowych. Na razie to jednak spekulacje. Trzeba więc poczekać na wyniki dalszych studiów...
  3. Amerykańska firma Sonitus Medical opracowała aparat słuchowy dla osób z jednostronnym niedosłuchem/głuchotą. System SoundBite wykorzystuje zęby do transmitowania dźwięków, bazuje więc na przewodzeniu kostnym przez czaszkę. Drgania są interpretowane przez ucho wewnętrzne jako fala dźwiękowa. Urządzenie obsługuje dźwięki z zakresu od 250 do ponad 12.000 Hz. SoundBite składa się z dwóch podjednostek: jedną (Behind The Ear, BTE) zakłada się jak zwykły aparat za ucho, a drugą (In The Mouth, ITM) na zęby trzonowe. Tak jak małżowina uszna BTE wychwytuje dźwięki. Moduł wyposażono w procesor sygnałowy (ang. digital signal processor, DSP), który odpowiada za cyfrową obróbkę sygnału, oraz drugi mikrofon do eliminowania zakłócających szumów. Poza tym projektanci uwzględnili nadajnik, przesyłający bezprzewodowo dźwięk do ITM. ITM przetwarza sygnał na nieodczuwalne dla właściciela aparatu wibracje i wysyła je do obojga uszu wewnętrznych. Konstrukcja SoundBite sprawia, że jest właściwie niewidoczny dla postronnego obserwatora. Nakładka na zęby przypomina nieco aparat ortodontyczny, nie powinna więc być niewygodna. Jest wykonywana na zamówienie, by pasować albo na górne lewe, albo na dolne prawe zęby. Elektronikę ITM, w tym ładowalną baterię, zabezpieczono akrylem stomatologicznym. Ostatnio SoundBite uzyskało pozwolenie Agencji ds. Żywności i Leków (FDA), dlatego Sonitus Medical planuje premierę produktu na rynku amerykańskim już w najbliższych miesiącach. Analizując wniosek Sonitus Medical, FDA opierała się na wynikach 2 badań klinicznych. Pierwsze przez miesiąc oceniało bezpieczeństwo i skuteczność systemu SoundBite na grupie 28 pacjentów. Rezultaty studium ukażą się w jednym z przyszłych numerów branżowego pisma Otology and Neurotology. Drugie półroczne badanie, które koncentrowało się na długoterminowych skutkach korzystania z aparatu, objęło 22 pacjentów. Po upływie 6 miesięcy 95% ochotników wspominało o usatysfakcjonowaniu produktem; identyczny odsetek badanych chętnie lub bardzo chętnie poleciłby urządzenie przyjacielowi z takim samym problemem słuchowym. Nie pojawiły się żadne medyczne, stomatologiczne lub audiologiczne efekty uboczne, wynikające z zastosowania urządzenia lub wdrożonej procedury. ITM nie uszkadzał zębów ani przyzębia. Ochotnicy nosili go na swoich naturalnych zębach, także tych z wypełnieniami i po leczeniu kanałowym, oraz na koronach i implantach.
  4. Naukowcy z Uniwersytetu Bar-Ilan opracowali nowy sposób oceny zanieczyszczenia wody. Wsłuchują się w odgłosy wydawane przez unoszące się w niej rośliny. Izraelczycy oświetlali promieniem lasera glony, a emitowane przez nie fale dźwiękowe dostarczały informacji na temat stopnia i rodzaju zanieczyszczenia. Glony jako pierwsze wskazują na zmiany zachodzące w jakości wody – przekonuje biolog Zvy Dubinsky. Zasoby wody pitnej na Ziemi powoli się kurczą, dlatego też badanie alg może być tańszą, szybszą i dokładniejszą metodą oceny jej zdatności do spożycia niż te stosowane dotąd. Izraelczyk wyjaśnia, że stworzone przez niego prototypowe urządzenie mierzy nasilenie fotosyntezy. Próbki wody z glonami oświetla się laserem. W ten sposób prowokuje się rośliny do przeprowadzania fotosyntezy. Nie zużywają one jednak całego ciepła, część "mocy" powraca do wody w postaci fal dźwiękowych. Ich parametry zależą od kondycji alg i nasilenia fotosyntezy. Wystarczy więc skorzystać z zanurzonego w wodzie mikrofonu i wszystko staje się jasne... Glony cierpiące z powodu zanieczyszczenia ołowiem, który pochodzi np. ze zużytych baterii czy fabryk farb, emitują odmienne dźwięki niż rośliny narażone na niedobory żelaza czy wystawione na oddziaływanie innych toksyn – wyjaśnia Yulia Pinchasov. Jeśli Izraelczykom uda się zebrać odpowiednie fundusze, gotowe urządzenie trafi do sprzedaży w ciągu 2 lat.
×
×
  • Dodaj nową pozycję...