Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'antywodór' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 4 wyniki

  1. Naukowcy pracujący w CERN-ie przy eksperymencie ALPHA dokonali kolejnego istotnego kroku na drodze ku zrozumieniu antymaterii i budowy wszechświata. Eksperymentalnie wykazali, że są w stanie zbadać strukturę wewnętrzną atomu antywodoru. Wiemy, że jest możliwe zaprojektowanie eksperymentu, który pozwoli nam na wykonanie szczegółowych pomiarów antyatomów - mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA. Nasz wszechświat wydaje się niemal w całości zbudowany z materii. Antymateria gdzieś zniknęła. Tymczasem podczas Wielkiego Wybuchu powinno być jej tyle samo co materii. Zetknięcie materii i antymaterii prowadzi do ich anihilacji. Przewaga materii we wszechświecie sugeruje, że natura preferuje ją nad antymaterię. Jeśli uda się szczegółowo zbadać atomy antymaterii będziemy bliżsi odpowiedzi na pytanie o tę preferencję. W czerwcu ubiegłego roku informowaliśmy, że ekspertom z CERN-u udało się uwięzić i przechować atomy antywodoru przez 1000 sekund. Wówczas Joel Fajans, jeden z naukowców pracujących przy ALPHA mówił, że tysiąc sekund to aż nadto czasu, by wykonać pomiary schwytanego antyatomu. To wystarczająco długo, by np. zbadać jego interakcję z promieniem lasera czy mikrofalami. W skład atomu wodoru wchodzi elektron. Oświetlając atom laserem można doprowadzić do pobudzenia elektronu, który przeskoczy na wyższą orbitę, a następnie powróci na oryginalną orbitę, emitując przy tym światło. Możliwe jest bardzo precyzyjne zmierzenie spektrum tego światła, które w świecie materii jest unikatowe dla wodoru. Teoretycznie niemal identyczne spektrum powinniśmy uzyskać z pobudzenia atomu antywodoru. I właśnie dokonanie takiego pomiaru jest ostatecznym celem eksperymentu ALPHA. Wodór to najbardziej rozpowszechniony pierwiastek we wszechświecie. Jego strukturę rozumiemy bardzo dobrze. Teraz możemy zacząć odkrywać prawdę o antywodorze. Czy są one różne? Czas pokaże - mówi Hangst. Naukowcy dokonali właśnie pierwszych pomiarów antywodoru. Atomy najpierw zostały złapane w magnetyczną pułapkę. Następnie oświetlono je mikrofalami o precyzyjnie dobranej częstotliwości. To spowodowało zmianę orientacji magnetycznej antyatomów i uwolnienie się ich z pułapki. Wówczas antyatomy napotkały na atomy i doszło do ich anihilacji, co pozwoliło czujnikom na zarejestrowanie charakterystycznego wzorca tego zdarzenia. To z kolei dowiodło, że możliwe jest przeprowadzenie eksperymentu, w którym właściwości wewnętrzne atomu antywodoru zostaną zbadane za pomocą mikrofal.
  2. ALPHA Collaboration, międzynarodowy zespół pracujący w CERN-nie uwięził 309 atomów antywodoru i przechował je przez 1000 sekund. Co więcej, już teraz wiadomo, że możliwe będzie dłuższe ich przechowywanie. Już w listopadzie ubiegłego roku ALPHA poinformowała o uwięzieniu 38 atomów antywodoru, z których każdy przechowano przez 1/6 sekundy. Z czasem uczeni nauczyli się przechowywać coraz więcej antymaterii i utrzymywać ją przez coraz dłuższy czas. Prawdopodobnie najważniejszym aspektem naszych prac jest to, że po 1 sekundzie atomy antywodoru już znajdowały się w stanie podstawowym. To prawdopodobnie pierwsze uzyskane antyatomy w stanie podstawowym - mówi Joel Fajans z Lawrence Berkeley National Laboratory, jeden z członków ALPHA. Zasadniczym elementem pułapki wykorzystanej przez ALPHA jest ośmiopolowy nadprzewodzący magnes, który powstał w LBNL. To dzięki niemu w ciągu 15 minut można schwytać i uwięzić atomy antywodoru. Dotychczas jedynym sposobem na stwierdzenie, czy złapaliśmy antyatom, było wyłączenie magnesu. Gdy antyatom uderzał w ścianę pułapki, ulegał anihilacji i wiedzieliśmy, że tam był. Początkowo wyłączaliśmy magnes za każdym razem, gdy mieliśmy nadzieję, że antyatom został złapany. To pozwoliło nam nie przeoczyć żadnego z nich - dodaje Fajans. Naukowcy ciągle udoskonalają swoją pułapkę tak, by móc w przyszłości złapać w nią nie tylko antywodór. Na początku pułapka łapała jeden antyatom co 10 prób, później za każdym razem udawało się złapać antyatom. Złapanie antyatomów na 1000 sekund wskazuje, że można je przetrzymywać i dłużej, tak jak udaje się dużej przetrzymać w magnetycznych pułapkach zwykłe atomy. Tysiąc sekund to aż nadto czasu, by wykonać pomiary schwytanego antyatomu. To wystarczająco długo, by np. zbadać jego interakcję z promieniem lasera czy mikrofalami - dodaje Fajans. Jego kolega, Jonathan Wurtele, dodaje, że zmierzono też energię antyatomu. Tego lata planujemy więcej eksperymentów z użyciem mikrofal. Mam nadzieję, że zmierzymy wywoływane oddziaływaniem mikrofal zmiany w stanie atomowym antyatomów - mówi. Z kolei do roku 2012 naukowcy planują tak przerobić pułapkę ALPHA, by można było rozpocząć badania z udziałem lasera. Dzięki temu urządzeniu można będzie przeprowadzić badania spektroskopowe czy schłodzić antyatomy w celu przeprowadzenia kolejnych eksperymentów.
  3. CERN poinformował o zakończonym sukcesem przechwyceniu atomów antywodoru. Pozwoli to na dokładne jego zbadanie i przeprowadzenie porównań materii i antymaterii. Antymateria od dawna stanowi jedną z największych tajemnic nauki. Jest ona identyczna z materią, ma jednak przeciwny ładunek. Gdy materia i antymateria się spotkają, powinno dojść do anihilacji obu. Uczni uważają, że podczas Wielkiego Wybuchu powstały równe ilości materii i antymaterii. Jednak tej drugiej nie udało się odnaleźć. Mamy do czynienia tylko z materią. Antymateria zniknęła. Naukowcy zaczęli więc się zastanawiać, czy wyjaśnieniem takiego stanu rzeczy nie mogłaby być niewielka nierównowaga w proporcjach materii i antymaterii podczas Wielkiego Wybuchu. Być może wyjaśniałaby ona fenomen budowy wszechświata. Jednym ze sposobów byłoby przeprowadzenie porównania materii i antymaterii. Tą drugą należałoby jednak stworzyć w sposób sztuczny. CERN jest jedynym miejscem na świecie, gdzie mogła powstać - i w końcu powstała - antymateria. Najprostszym atomem antymaterii jest antywodór. Jako że wodór składa się z protonu i elektronu, antywodór trzeba stworzyć z antyprotonu i pozytronu. W 1995 roku stworzono pierwszych 9 atomów antywodoru. Siedem lat później naukowcy wykazali, że możliwe jest tworzenie antywodoru w dużych ilościach. Problemem była jego natychmiastowa anihilicja w zetknięciu z materią. Teraz dzięĸi eksperymentowi ALPHA udało się złapać antywodór w pułapkę magnetyczną, w której pozostaje aż przez 1/10 sekundy. To wystarczy, by przeprowadzić odpowiednie badania. Uczeni biorący udział w badaniach poinformowali właśnie, że 38 spośród tysięcy atomów antywodoru udało się złapać w pułapkę. Z nieznanych nam powodów natura pozbyła się antymaterii. To niezwykłe, że urządzenia ALPHA pozwala nam badać stabilne atomy antymaterii. To inspiruje nas do ciężkiej pracy, której celem jest sprawdzenie, czy antymateria ma jakieś tajemnice - mówi profesor Jeffrey Hangst, rzecznik prasowy ALPHA. Dzięki najnowszym osiągnięciom CERN-u z pewnością jeszcze niejednokrotnie usłyszymy o antymaterii i eksperymencie ALPHA.
  4. Fizycy z CERN-u schłodzili antymaterię do najniższej osiągniętej dotychczas temperatury. Zespół naukowców obniżył temperaturę antyprotonów do 9,26 kelwina, jest ona zatem niższa niż temperatura Plutona. Badania pomogą wyjaśnić, dlaczego wszechświat zbudowany jest z materii, a nie antymaterii. Aby zbadać to zjawisko uczeni będą musieli połączyć antyprotony z pozytronami, uzyskując w ten sposób antywodór. Dzięki utrzymywaniu schłodzonego antywodoru w pułapkach magnetycznych będą mogli studiować zachowanie antymaterii. Jak zauważył Jeff Hangst, rzecznik prasowy zespołu badającego antymaterię w niskich temperaturach, wodór jest jednym z najczęściej badanych systemów fizycznych. Uczeni z CERN-u chcieliby z taką samą uwagą zbadać antywodór. Poprzedni rekord schłodzenia antymaterii należał do zespołu z Uniwersytetu Harvarda, który w 1989 roku obniżył temperaturę antyprotonów do 104,3 kelwina.
×
×
  • Dodaj nową pozycję...