Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'akumulator'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 8 results

  1. Używamy coraz więcej smartfonów, samochodów elektrycznych i innych urządzeń, wymagających stosowania akumulatorów. To jednak oznacza coraz większe zapotrzebowanie na metale ciężkie, które stanowią olbrzymie zagrożenie zarówno dla ludzkiego zdrowia, jak i środowiska naturalnego. Szczególne kontrowersje budzi wykorzystywanie kobaltu, pozyskiwanego głównie w centralnej Afryce. Z jego wydobyciem wiąże się olbrzymie niszczenie środowiska naturalnego, niewolnictwo, morderstwa i gwałty. Naukowcy z IBM Research wykorzystali trzy opracowane przez siebie materiały, które nigdy nie były jeszcze używane w akumulatorach i stworzyli w ten sposób urządzenie, które nie wykorzystuje ani metali ciężkich, ani innych materiałów, z wydobyciem których wiąże się popełnianie przestępstw na ludziach czy środowisku naturalnym. Wspomniane materiały można pozyskać z wody morskiej, co jest metodą mniej szkodliwą dla środowiska niż wydobywanie metali z ziemi. Podczas wstępnych testów nowego akumulatora stwierdzono, że można go zoptymalizować tak, by przewyższał akumulatory litowo-jonowe w wielu kategoriach, takich jak – niższa cena, krótszy czas ładowania, wyższa moc i gęstość energetyczna, lepsza wydajność energetyczna oraz mniejsza palność. Opracowana przez Battery Lab katoda nie potrzebuje kobaltu i niklu, a akumulator zawiera bezpieczny elektrolit o wysokiej temperaturze zapłonu. Ponadto podczas testów okazało się, że w czasie ładowania nie powstają dendryty, które są poważnym problemem w akumulatorach litowo-jonowych, gdyż mogą doprowadzić do spięcia i pożaru. Dotychczas przeprowadzone testy pokazują, że odpowiednio skonfigurowany nowy akumulator można naładować do 80% w czasie krótszym niż 5 minut. W połączeniu ze stosunkowo niskim kosztem pozyskania materiałów, możemy mieć do czynienia z tanim akumulatorem, który można szybko naładować. Inżynierowie IBM-a obliczają, że w szczególnie wymagających zastosowaniach, jak na przykład lotnictwo, akumulator można skonfigurować tak, by jego gęstość energetyczna była większa niż 10 000 W/L. Ponadto akumulator wytrzymuje wiele cykli ładowania/rozładowania, dzięki czemu może być wykorzystywany w sieciach energetycznych, gdzie wymagana jest długa i stabilna praca. Podsumowując, początkowe prace pokazały, że IBM Research opracował tani akumulator, w którym nie są wykorzystywane kobalt, nikiel i inne metale ciężkie, który można naładować do 80% w czasie krótszym niż 5 minut, którego gęstość mocy może przekraczać 10 000 W/L, a gęstość energii jest wyższa od 800 Wh/L, którego wydajność energetyczna przekracza 90% i którego elektrolit jest mniej palny. Teraz IBM Research wspólnie z Mercedes-Benz Research, Central Glass i Sidusem prowadzi badania, które mają na celu dalsze rozwijanie tej technologii, opracowanie infrastruktury potrzebnej do produkcji nowych akumulatorów i ich komercjalizacji. « powrót do artykułu
  2. Envia Systems wyprodukowała najtańsze - w przeliczeniu na ilość przechowywanej energii - ogniwo dla samochodów elektrycznych. Dzięki niemu można będzie znacząco zwiększyć zasięg niedrogich pojazdów. Envia poinformowała, że gęstość energetyczna urządzenia wynosi 400 watogodzin na kilogram, a gotowe akumulatory zostaną wycenione na 125 USD za kilowatogodzinę pojemności. To z kolei oznacza, że samochód elektryczny za 20 000 dolarów będzie miał zasięg około 480 kilometrów na pojedynczym ładowaniu. W tym przemyśle gęstość energetyczna akumulatorów rośnie średnio o 5% rocznie. My ją podwoiliśmy, jednocześnie obniżając o połowę cenę, co pozwoli nam na wprowadzenie tych akumulatorów na masowy rynek pojazdów o zasięgu 300 mil - powiedział szef Envii, AtulKapadia. Nowe ogniwo zbudowane jest z krzemowo-węglowego nanokompozytu, który posłużył do stworzenia anody oraz z katody HCMR (High Capacity Manganese Rich). Udoskonalono także sam elektrolit. Wymiary urządzenia to 97x190x10 milimetrów, waga wynosi 365 gramów, a pojemność 46 Ah. O tym jak wiele osiągnęła Envia może świadczyć fakt, że najbliższym konkurentem jej urządzenia jest ogniowo firmy Panasonic montowane w samochodach Tesla Model S, którego gęstość wynosi 245 Wh/kg. Obecnie ogniwa Envii przechodzą niezależne testy w ośrodku marynarki wojennej. Na rynek mają trafić w 2015 roku.
  3. Akumulator opracowany przez Nanotek Instruments ma wszelkie szanse stać się przełomowym urządzeniem na rynku pojazdów elektrycznych. Specjaliści zaprojektowali urządzenie przechowujące energie, która jest w stanie bardzo szybko uwięzić dużą liczbę jonów litu pomiędzy elektrodami, których działania wspomagają duże ilości grafenu. Naładowanie takiego akumulatora, który mógłby napędzać samochody elektryczne, może trwać mniej niż minutę. Urządzenie przyda się również np. do przechowywania energii ze źródeł odnawialnych. Wynalazcy nazwali je „surface-mediate cells" (SMCs). Już w tej chwili, mimo, że materiały oraz konstrukcja urządzenia nie zostały zoptymalizowane, charakteryzuje się ono osiągami przewyższającymi zarówno konstrukcje litowo-jonowe jak i superkondensatory. Gęstość mocy urządzenia wynosi 100 kW/kg, jest zatem 100-krotnie większa od baterii litowo-jonowych i 10-krotnie przekracza możliwości superkondensatorów. Im większa zaś jest gęstość mocy, tym szybszy transfer energii, a co za tym idzie - tym krótsze czasy ładowania. Ponadto gęstość energii - czyli ilość energii, którą można przechowywać w danej objętości lub masie - sięga 160 Wh/kg. Jest więc porównywalna z gęstością baterii litowo-jonowych i 30 razy większa od gęstości konwencjonalnych superkondensatorów. Jeśli porównamy SMC i baterie litowo-jonowe o tej samej wadze, to napędzany nimi samochód elektryczny będzie mógł przejechać mniej więcej taką samą trasę na pojedynczym ładowaniu. Nasze SMCs, podobnie jak współczesne urządzenia litowo-jonowe, mogą być jeszcze ulepszone pod względem gęstości energii. Jednak SMC mogą być ładowane w ciągu minut (prawdopodobnie w mniej niż minutę), a akumulatory litowo-jonowe wymagają godzin ładowania - mówi Bor Z. Jang, współzałożyciel Nanotek Instruments. Nanotek i jego firma-córka, Angstron Materials, która współpracowała przy SMC, specjalizują się w badaniach nad nanometeriałami. Angston to największy na świecie producent płytek nanografenowych (NGP). Jak widzimy, SMC łączą zalety baterii i superkondensatorów. Te pierwsze charakteryzują się większą gęstością energetyczną, te drugie - większą gęstością mocy. Nanotek i Angstron stworzyły nową architekturę urządzenia do przechowywania energii, która potencjalnie może zrewolucjonizować przemysł samochodowy. Kluczem do sukcesu są anoda i katoda wyposażone w olbrzymie powierzchnie grafenowe. Podczas produkcji naukowcy umieścili na anodzie metaliczny lit (w postaci cząsteczek lub folii). W czasie pierwszego rozładowania, dochodzi do jonizacji litu, w wyniku czego pojawia się znacznie większa liczba jonów niż w urządzeniach litowo-jonowych. W czasie pracy urządzenia jony migrują poprzez płynny elektrolit do katody. Z kolei podczas ładowania, olbrzymia liczba jonów litu szybko przechodzi od katody do anody. Dzięki wielkiej powierzchni obu elektrod możliwe jest szybkie przesyłanie dużych ilości jonów. Dzięki temu, że jony litu przemieszczają się pomiędzy porowatymi powierzchniami elektrod udało się wyeliminować czasochłonny proces interkalacji. Naukowcy prowadzili badania z różnymi rodzajami grafenu i mówią, że konieczne są dalsze eksperymenty. Chcą teraz przede wszystkim skupić się na zwiększeniu żywotności swojego urządzenia. Dotychczasowe badania wykazały, że może ono zachować 95% pojemności po 1000 cykli ładowania/rozładowania, a nawet po 2000 cykli nie zauważono, by dochodziło do powstawania zmniejszających pojemność akumulatorów kryształów dendrytycznych. Nie widzimy żadnych poważniejszych przeszkód, które mogłyby uniemożliwić komercjalizację technologii SMC. Chociaż grafen jest obecnie drogi, to Angstron Materials pracuje nad technologiami umożliwiającymi jego produkcję na skalę przemysłową. Przewidujemy, że w ciągu najbliższych 1-3 lat jego cena dramatycznie spadnie - mówi Jang.
  4. Niewielka firma Nanotune twierdzi, że rozwijane przez nią ultrakondensatory będą mogły konkurować z tradycyjnymi akumulatorami. Przedsiębiorstwo już teraz jest w stanie wyprodukować ultrakondensatory zdolne do przechowywania od 4 do 7 razy więcej energii niż standardowe urządzenia tego typu. Zaletami ultrakondensatorów są możliwość szybkiego uwalniania energii, szybkiego ładowania oraz duża wytrzymałość. Jednak urządzenia takie są obecnie zbyt drogie i przechowują zbyt mało energii by zastąpić akumulatory. Nanotune zbudowało jednak ultrakondensator, którego gęstość energetyczna - w przypadku zastosowania standardowego elektrolitu - wynosi 20 Wh/kg. Jeśli zaś użyta zostanie droższa ciecz jonowa, to gęstość ultrakondensatorów Nanotune wzrasta do 35 Wh/kg. W niektórych pojazdach hybrydowych używane są akumulatory o gęstości 40 Wh/kg. Tymczasem Nanotune zapowiada, że do końca bieżącego roku wyprodukuje ultrakondensator o pojemności 70 Wh/kg. Akumulatory wykorzystywane w samochodach elektrycznych i hybrydowych nie są odporne na działanie skrajnych temperatur. Zarówno zbyt wysokie jak i zbyt niskie temperatury im szkodzą. Dlatego też producenci wyposażają je w systemy chłodzące i nagrzewające. To, oczywiście, zwiększa cenę i czyni całość bardziej podatną na awarie. Jakby tego było mało, z czasem pojemność akumulatorów spada, a producenci, by temu przeciwdziałać, dodają nadmiarowe ogniwa. Ultrakondensatory są pozbawione tych wad. Tolerują znacznie większy zakres temperatur i znacznie wolniej tracą pojemność. Mogą wytrzymać setki tysięcy cykli ładowania/rozładowywania. Na razie cena ultrakondensatorów Nanotune jest bardzo wysoka i wynosi od 2400 do 6000 USD za kilowatogodzinę pojemności. Amerykański Departamen Energii uważa, że samochody elektryczne staną się konkurencyjne wobec tradycyjnych przy cenie 250 USD za kilowatogodzinę. Nanotune uważa jednak, że z czasem urządzenia tej firmy mogą kosztowac około 150 USD za kilowatogodzinę. Wszystko zależy bowiem od ceny materiałów (jak np. elektrolitu) oraz rozpoczęcia produkcji na dużą skalę. Nanotune to kolejna firma, która obiecuje wyprodukowanie ultrakondensatorów o dużej pojemności. Specjaliści uważają, że jeśli komuś uda się stworzyć tego typu urządzenia o pojemności 100 Wh/kg to będzie to „fantastyczne osiągnięcie".
  5. Profesor Paul Braun i jego zespół z University of Illinois opracowali nową nanostrukturę katody, dzięki której znakomicie przyspieszono czas ładowania i rozładowywania baterii, przy jednoczesnym utrzymaniu jej pojemności. System, który stworzyliśmy daje nam moc porównywalną z kondensatorem i energię porównywalną z akumulatorem. Większość kondensatorów przechowuje niewielkie ilości energii. Mogą ją za to bardzo szybko uwalniać. Z kolei większość akumulatorów jest zdolna do przechowywania dużych ilości energii, ale nie potrafią jej ani szybko uwalniać, ani szybko przyjmować. Nasz system ma zalety obu tych rozwiązań - stwierdza Braun. Od pewnego czasu wiadomo, że jeśli aktywny materiał do przechowywania energii zostanie przygotowany w formie cienkowarstwowej, będzie zdolny do bardzo szybkiego ładowania i rozładowywania, ale odbędzie się to kosztem pojemności. Grupa Brauna utworzyła cienkowarstową trójwymiarową strukturę, uzyskując wysoką pojemność oraz duże napięcie. Uczeni eksperymentalnie wykazali, że ich elektrody można ładować i rozładowywać w czasie 10-100 razy krótszym niż elektrody tradycyjnych baterii. Stworzenie takich akumulatorów oznaczałoby, że na rynku pojawią się telefony komórkowe czy laptopy, które można załadować w kila minut oraz np. defibrylatory, które nie będą musiały ładować się między kolejnymi uwolnieniami energii. To także nadzieja na rozwój samochodów elektrycznych. Rynek takich urządzeń z pewnością będzie szybko się rozwijał, jeśli kierowcy będą mogli w kilka minut załadować akumulatory i przejechać dzięki temu przynajmniej 200 kilometrów. Grupa Browna, by stworzyć odpowiednią strukturę materiału, najpierw pokryła powierzchnię niewielkimi kulami. Użycie kul było kluczowe, gdyż samodzielnie tworzą one regularną siatkę. Następnie wolne przestrzenie pomiędzy kulami pokryto metalem, a same kule rozpuszczono. W ten sposób powstała gąbczasta trójwymiarowa struktura. Następnie za pomocą metody elektropolerowania powiększono otwory, łącząc je ze sobą, tworząc otwartą sieć. Później "gąbkę" pokryto aktywnym materiałem cienkowarstwowym. Braun i jego współpracownicy zbudowali prototypowe baterie litowo-jonowe i niklowo-metalowo-wodorowe, jednak opracowana przez nich struktura gąbczastego metalu jest uniwarsalna i może współpracować z wieloma różnymi materiałami. Podoba nam się ta uniwersalność. Dzięki niej, gdy ktoś opracuje lepsze materiały, będzie mógł zastosować naszą strukturę - mówi Braun.
  6. Hitachi opracowało technologię, która dwukrotnie wydłuża żywotność firmowych akumulatorów litowo-jonowych. Dzięki niej urządzenia będą mogły pracować ponad 10 lat. Okres pracy akumulatorów wydłużono dzięki zastąpieniu części manganu w elektrodzie dodatniej innym - nieujawnionym jeszcze - elementem stabilizującym strukturę krystaliczną elektrody. Ponadto wzbogacono ją też o odporny na działanie kwasu tlenek, który zapobiega przenikaniu manganu do elektrolitu. Japończycy zastrzegają, że na razie nowe akumulatory nie trafią do naszych telefonów komórkowych czy laptopów. Znajdą one zastosowanie przede wszystkim w przemyśle, np. w turbinach wiatrowych czy pojazdach hybrydowych. Hitachi nie kończy na tym pracy nad ulepszaniem akumulatorów. Firma chce ulepszyć ich wydajność poprzez dalsze udoskonalanie konstrukcji elektrody dodatniej oraz zmianę składu elektrolitu.
  7. Rozładowująca się w nieodpowiednim momencie bateria laptopa czy aparatu cyfrowego może stanowić bardzo niemiłą niespodziankę. Tym bardziej, gdy jej ponowne naładowanie zajmuje co najmniej kilkadziesiąt minut. Dzięki pracom Toshiby już wkrótce w nasze ręce mogą trafić akumulatory, które załadujemy w ciągu 5 minut, a ich żywotność wyniesie nawet 10 lat. Akumulatory można ładować prądem o natężeniu nawet 50 amperów. Japońska firma ogłosiła właśnie, że stworzyła nowy typ baterii o nazwie Super Charge ion Battery (SCiB). Urządzenie można załadować do 90% pojemności w czasie krótszym niż 5 minut, a jego żywotność wynosi co najmniej 10 lat. Toshiba informuje, że opracowała nową katodę, nowy elektrolit, separator i nową technologię produkcji. Dopiero te wszystkie wynalazki razem pozwoliły na skonstruowanie SCiB. Japońska firma mówi, że po 3000 cyklach ładowania jej urządzenie traci zaledwie 10% pojemności. Ponadto bateria jest wyjątkowo bezpieczna, gdyż nowe materiały użyte do produkcji katody są bardzo odporne na wysoką temperaturę. Znacząco zredukowało to możliwość zapłonu w wyniku krótkiego spięcia czy niewłaściwej eksploatacji. W tej chwili Toshiba przygotowała dwa typy swoich baterii. Jedne o wymiarach 62x95x13 mm, które ważą 150 gramów, dostarczają prąd o napięciu 2,4 wolta a ich pojemność wynosi 4,2 amperogodzin. Drugi rodzaj to 2-kilogramowa bateria o wymiarach 10x30x4,5 cm i pojemności 4,2 Ah, która dostarcza napięcie 24 wolt. Pierwsze akumulatory nowego typu mają trafić na rynek już w marcu przyszłego roku.
  8. Nissan we współpracy z firmą NEC ma zamiar zastąpić powszechnie wykorzystywane w samochodach hybrydowych akumulatory NiMH (niklowo-wodorkow-metalowe) urządzeniami litowo-jonowymi (Li-Ion). Akumulatory litowo-jonowe są uznawane za doskonalsze od NiMH. Najważniejszy wydaje się fakt, że oferują one większą pojemność przy mniejszych rozmiarach, a tym samym, przy mniejszej wadze. Będzie to miało olbrzymie znacznie dla pojazdów hybrydowych i powinno pozytywnie wpłynąć na wszystkie ich charakterystyki (prędkość, przyspieszenie, zużycie paliwa itp.). Urządzenia litowo-jonowe budzą jednak poważne obawy dotyczące bezpieczeństwa. Są one bardziej podatne na pożar czy eksplozję. Są też mniej wytrzymałe niż akumulatory NiMH. Nissan i NEC pracują nad akumulatorami Li-Ion, które będą spełniały wszystkie wymogi bezpieczeństwa. Obie firmy obiecują, że w 2009 roku urządzenie będzie gotowe i rozpocznie się jego produkcja. Powołana ma zostać też spółka, robocza zwana obecnie "Automotive Enegry Supply Corporation”. Będzie ona dostarczała akumulatory do pierwszego zaprojektowanego w pełni przez Nissana samochodu hybrydowego, który ma ujrzeć światło dzienne w 2010 roku. We wrześniu ubiegłego roku Nissan zaprzestał współpracy z Toyotą, która zajmuje się rozwojem akumulatorów NiMH. Obecnie Toyota jest rynkowym liderem sprzedaży samochodów hybrydowych, a niedawno pokazała najbardziej luksusową i najdroższą hybrydę świata – wartego 104 750 dolarów Lexusa 600h L.
×
×
  • Create New...