Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'Teleskop Hubble'a'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 7 results

  1. Teleskop Hubble'a sfotografował protoplanetę podobną do Jowisza, która formuje się w wyniku „intensywnego i gwałtownego” procesu. Obserwacje Hubble'a wspierają mniej popularną z hipotez o tworzeniu się planet, tę mówiącą o niestabilności dysku protoplanetarnego. Nowo tworząca się planeta krąży wokół gwiazdy, której wiek astronomowie szacują na zaledwie 2 miliony lat. Dla przypomnienia, Układ Słoneczny liczy sobie około 4,6 miliarda lat. Wszystkie planety powstają z dysków protoplanetarnych, dysków materiału krążącego wokół gwiazd. Dominująca hipoteza dotycząca formowania się gazowych olbrzymów jak Jowisz mówi, że powstają one w wyniku stopniowego zlepiania się materiału krążącego w dysku protoplanetarnym. Materiał, od miniaturowych ziaren pyłu po wielkie bloki skalne, zderza się i zlepia. Z czasem powstaje jądro, wokół którego gromadzi się gaz z dysku. Zgodnie zaś z alternatywną, mniej popularną, hipotezą, gdy dysk protoplanetarny się ochładza, grawitacja powoduje jego gwałtowne rozpadnięcie się na fragmenty o masie planet. Nowo odkryta planeta, AB Aurigae b, jest około 9-kronie bardziej masywna od Jowisza i krąży wokół gwiazdy w odległości dwukrotnie większej niż odległość między Plutonem a Słońcem. Przy tak wielkiej odległości uformowanie się planety ze zderzającego się i zlepiającego materiału musiałoby trwać niezwykle długo. O ile w ogóle by do tego doszło. Dlatego też naukowcy sądzą, AB Aurigae b powstaje w wyniku niestabilności dysku. Mamy więc tutaj do czynienia z potwierdzeniem mniej popularnego modelu tworzenia się planet. Powyższe badania zostały wykonane za pomocą dwóch instrumentów znajdujących się na pokładzie Teleskopu Hubble'a, a uzyskane wyniki porównano z danymi z japońskiego Subaru Telescope na Mauna Kea na Hawajach. Zinterpretowanie zjawisk zachodzących w tym układzie jest niezwykle trudne. Dlatego między innymi potrzebowaliśmy Hubble'a. Dobrej jakości zdjęcie pozwala nam lepiej odróżnić światło z dysku i z planety, mówi główny autor badań, Thayne Currie. Uczony dodaje, że przejrzano archiwa zdjęć Hubble'a i znaleziono w nich liczne zdjęcia AB Aurigae b wykonane w różnych długościach fali. Tworzą one spójny obraz, dostarczając silnych dowodów. Nowe odkrycie to silny dowód na poparcie hipotezy mówiącej, że niektóre gazowe olbrzymy powstają w wyniku niestabilności dysku. Tak naprawdę to grawitacja jest tym, co się ostatecznie liczy, a pozostałości po formowaniu się gwiazd w ten czy inny sposób – za pośrednictwem grawitacji – łączą się, tworząc planety, mówi Alan Boss z Carnegie Institution of Science w Waszyngtonie. « powrót do artykułu
  2. Teleskop Kosmiczny Hubble'a pobił wyjątkowy rekord – zaobserwował najdalej od Ziemi położoną indywidualną gwiazdę. Dotychczasowy rekord również należał do Teleskopu Hubble'a i został pobity w 2018 roku, kiedy to zaobserwowano MACS J1149+2223 Lensed Star 1 położoną w odległości 9 miliardów lat świetlnych od Ziemi. Rekord ten właśnie pobito i to od razu o miliardy lat świetlnych. Nowo zaobserwowana gwiazda znajduje się w odległości 12,9 miliarda lat świetlnych od naszej planety. Współczynnik przesunięcia ku czerwieni (redshift) dla tej odległości wynosi 6,2. Niemal nie mogliśmy w to uwierzyć, bo gwiazda znajduje się znacznie dalej, niż poprzedni rekord, mówi Brian Welch z Uniwersytetu Johnsa Hhopkinsa, główy autor artykułu opisującego osiągnięcie. Odkrycia dokonano w danych zebranych w ramach projektu Hubble's RELICS (Reionization Lensing Cluster Survey). Normalnie przy tych odległościach całe galaktyki wyglądają jak niewielkie smugi, w których światło milionów gwiazd zlewa się w jedno. Światło z galaktyki, w której znajduje się ta gwiazda zostało powiększone i rozproszone przez zjawisko soczewkowania grawitacyjnego w długi sierp, który nazwaliśmy Łukiem Wchodzącego Słońca, mówi Welch. Podczas szczegółowego badania galaktyki naukowcy zauważyli, że jedno z obserwowanych zjawisk jest powodowane przez ekstremalnie powiększoną w soczewkowaniu grawitacyjnym gwiazdę. Została ona nazwana Earendel, co w języku staroangielskim oznacza gwiazdę poranną. Odkrycie daje nadzieję na otwarcie całkiem nowego pola badań nad formowaniem się wczesnych gwiazd. Earendel powstała tak dawno, że może nie zawierać tych samych pierwiastków, co młodsze gwiazdy. Dzięki możliwości zbadania Earendel zyskamy okazję to przyjrzenia się wszechświatowi, jakiego nie znamy, ale który doprowadził do tego, co istnieje obecnie. To tak, jakbyśmy dotychczas czytali bardzo interesującą książkę, ale zaczęli od drugiego rozdziału, a teraz mieli okazję przeczytać, jak to wszystko się zaczęło, ekscytuje się Welch. Badacze sądzą, że Earendel ma masę co najmniej 50 razy większą od masy Słońca i jest miliony razy jaśniejsza od naszej gwiazdy. Mimo tego, że jest tak olbrzymia i jasna, nie bylibyśmy w stanie jej dostrzec z odległości, w jakiej się znajduje. Widzimy ją dzięki olbrzymiej gromadzie galaktyk WHL0137-08, który znajduje się między gwiazdą a Ziemią. Masa gromady zagina przestrzeń, działając jak olbrzymie szkło powiększające, dzięki któremu możemy dostrzec światło emitowane przez obiekty znajdujące się poza WHL0137-08. Szczęśliwie złożyło się, że Earendel znajduje się w takiej pozycji, iż jest maksymalnie powiększana przez soczewkę grawitacyjną tworzoną przez gromadę galaktyk. Dzięki temu „wystaje” z blasku milionów gwiazd swojej galaktyki macierzystej, a jej jasność jest wzmacniana przez soczewkę co najmniej tysiąckrotnie. Obecnie niw wiemy, czy Earendel jest częścią układu podwójnego, ale warto pamiętać, że większość masywnych gwiazd ma co najmniej jednego towarzysza. Specjaliści uważają, że przez wiele kolejnych lat Earendel będzie znacząco powiększana w wyniku soczewkowania. Gwiazdę będzie obserwował Teleskop Kosmiczny Jamesa Webba (JWST), a dzięki temu, że pracuje on głównie w podczerwieni, pozwoli na zdobycie wielu cennych informacji na jej temat. Uczeni spodziewają się, że Webb potwierdzi, iż Earendel to gwiazda, pozwoli nam też zmierzyć jej jasność i temperaturę, to zaś pozwoli na określenie typu gwiazdy i etapu życia, na jakim się znajduje. Astronomów szczególnie interesuje skład Earendel, gdyż gwiazda powstała zanim jeszcze wszechświat został wypełniony ciężkimi pierwiastkami wytworzonymi przez kolejne generacje gwiazd. Jeśli okaże się, że Earendel składa się wyłącznie w pierwotnego wodoru i helu, będzie to pierwszy dowód na istnienie gwiazd III populacji. To hipotetyczna populacja pierwszych bardzo masywnych gwiazd, które praktycznie nie zawierały metali. Składały się wyłącznie z wodoru i helu, z możliwą niewielką zawartością litu. Odkrycie Earendel przez Hubble'a daje nadzieję, że Webb dojrzy jeszcze bardziej odległe gwiazdy.   « powrót do artykułu
  3. NASA od miesiąca pracuje nad przywróceniem prawidłowej pracy Teleskopu Hubble'a. Wczoraj udało się uruchomić Wide Field Camera 3. To najważniejszy, najczęściej używany element teleskopu. Jest on używany przez ponad 30% czasu pracy Hubble'a. To jednocześnie drugi – po Advanced Camera for Surveys –instrument naukowy Hubble'a, który podjął pracę po ostatniej awarii. Ostatniej, gdyż doszło do niej zaledwie 3 miesiące po tym, jak teleskop został uruchomiony po poprzednich kłopotach. Do ostatniej awarii doszło 23 października. Pojawił się wówczas kod błędu wskazujący na utratę sygnału synchronizującego pracę instrumentów. Zespół naziemny zrestartował instrumenty i następnego dnia Hubble podjął normalną pracę. Nie na długo jednak. Już 25 października pojawił się sygnał świadczący o masowej utracie danych synchronizacyjnych, w związku z czym wszystkie instrumenty naukowe automatycznie przełączyły się w tryb bezpieczny. Od tamtej pory trwają prace nad przywróceniem funkcjonowania Teleskopu. Na szczęście od 1 listopada nie pojawił się żaden kolejny sygnał świadczących o nieprawidłowościach. Wczoraj inżynierowie zdecydowali się na uruchomienie Wide Field Camera 3. Wprowadzają też zmiany w konfiguracji instrumentu. Są one na bieżąco testowana na naziemnych symulatorach. Zmiany mają na celu spowodowanie, by urządzenie tolerowało pewną liczbę sygnałów o utracie synchronizacji i mimo ich pojawienia się, by pracowało normalnie. Zmiany takie zostaną zastosowane najpierw w innym instrumencie, Cosmic Origins Spectrograph. Mają one chronić jego niezwykle czuły detektor pracujący w zakresie dalekiego ultrafioletu. Wprowadzanie tych zmian oraz testy potrwają jeszcze kilka tygodni. Pozostałe instrumenty naukowe Hubble'a nadal znajdują się w trybie bezpiecznym, a cała reszta teleskopu kosmicznego działa prawidłowo. Teleskop Kosmiczny Hubble'a pracuje w przestrzeni kosmicznej już ponad 31,5 roku. To jeden z najważniejszych instrumentów naukowych w dziejach i jedyny teleskop kosmiczny, który zbudowano z myślą o jego serwisowaniu. Dotychczas odbyło się doń 5 misji serwisowych. Ostatnia miała miejsce w 2009 roku. Od czasu zakończenia programu lotów wahadłowców nie ma jednak czym polecieć do Hubble'a. W 2017 roku pojawiła się informacja, że być może planowana jest kolejna misja serwisowa. Dotychczas jej nie zrealizowano, jednak można przypuszczać, że wcześniej czy później taka misja się odbędzie. NASA chce bowiem, by teleskop Hubble'a pracował jak najdłużej, być może nawet do roku 2040. Zapewne więc musi brać pod uwagę konieczność serwisowania urządzenia. Wystrzeliwane zaś w międzyczasie nowe teleskopy kosmiczne będą uzupełniały Hubble'a. « powrót do artykułu
  4. NASA określiła przyczynę awarii Teleskopu Hubble'a. Doszło do niej 13 czerwca, a błąd wystąpił w tzw. payload computer, który kontroluje, koordynuje i monitoruje instrumenty naukowe teleskopu. W wyniku awarii komputera instrumenty naukowe zostały automatycznie wprowadzone w tryb bezpieczny. Inżynierowie NASA przez ostatni miesiąc szukali przyczyny błędu i zastanawiali się nad rozwiązaniem problemu. Wielodniowe serie testów wykazały, że problem leży w podsystemie Power Control Unit (PCU), odpowiedzialnym za podawania stałego napięcia do payload computer. PCU zawiera regulator, który ma dostarczać prąd o napięciu 5V. Dodatkowy obwód bezpieczeństwa bez przerwy monitoruje napięcie wychodzące z PCU i jeśli jest ono zbyt niskie lub zbyt wysokie, przesyła do payload computer polecenie wyłączenia się. Przeprowadzone analizy wykazały, że albo regulator napięcia zawiódł, podał nieprawidłowe napięcie, przez co obwód bezpieczeństwa wyłączył payload computer, albo też doszło do degradacji obwodu bezpieczeństwa, który „zaciął się” w stanie, w którym ciągle nakazuje wyłączanie się payload computera. Jako, że nie udało się zresetować PCU, inżynierowie NASA podjęli decyzję o przełączeniu Teleskopu Hubble'a na zapasowy payload computer. Jest to wielodniowy proces. Jeśli się powiedzie, następnym etapem będzie włączanie i testowanie kolejnych instrumentów naukowych. « powrót do artykułu
  5. Teleskop Hubble'a znowu działa. Po ponad miesięcznej awarii wszystkie instrumenty naukowe pracują. A najlepszym na to dowodem są fotografie niezwykłych (wyjaśnienie w opisie zdjęcia) galaktyk ARP-MADORE2115-273 i ARP-MADORE0002-503, które zostały przysłane przez urządzenie. Jestem zachwycony, że Hubble znowu obserwuje wszechświat, rejestrując i przysyłając obrazy, które inspirują nas od dekad, stwierdził dyrektor NASA Bill Nelson. Pochwalił zespół, który pracuje przy Teleskopie i podkreślił, że dzięki jego wysiłkom urządzenie może kontynuować 32. rok swojej pracy w przestrzeni kosmicznej. Hubble przestał pracować 13 czerwca, gdy niespodziewanie pracę przerwał jego payload computer, odpowiedzialny za kontrolę instrumentów naukowych. Zgodnie z procedurami, instrumenty naukowe zostały automatycznie wprowadzone w tryb bezpieczny, a specjaliści przystąpili do badań teleskopu, by poznać przyczynę awarii. Do pomocy wezwano osoby, które pracowały przy budowie Hubble'a i analizowano jego dokumentację sprzed 40 lat. Jedną z zalet projektu, który trwa tak długo, jest zebrana olbrzymia ilość doświadczeń i wiedzy eksperckiej, stwierdziła Nzinga Tull, odpowiedzialna w Goddard Space Center za reagowanie w sytuacjach awaryjnych Hubble'a. Początkowo sądzono, że degradacji uległy moduły pamięci, jednak przełączenie na moduły zapasowe nie rozwiązało problemu. Opracowano więc serię testów, których celem było stwierdzenie, czy za kłopoty odpowiada Central Processing Module czy też układ komunikacyjny łączący ten moduł z innymi podzespołami. Gdy i tutaj nie znaleziono odpowiedzi,specjaliści zaczęli przyglądać się innym elementom, w tym Command Unit/Science Data Formatter oraz Power Control Unit. Problem jednak w tym, że testy tych podzespołów są skomplikowane i ryzykowne. Ich przełączanie wymaga podobnych operacji na innych podzespołach. Przełączanie wymagało 15 godzin wysyłania komend do teleskopu. Musieliśmy wyłączyć główny komputer, wówczas tymczasową kontrolę przejął zapasowy komputer trybu bezpiecznego. Musieliśmy też włączyć wiele innych podzespołów, które nigdy w przestrzeni kosmicznej nie były włączane i przełączyć interfejsy jeszcze innych podzespołów. Oczywiście nie było powodu, by uważać, że coś nie zadziała, ale cały zespół był podenerwowany i myślał o wszystkim, co mogło się nie udać i co można będzie z tym zrobić, wyjaśnia Jim Jeletic, jeden z menedżerów Hubble'a. W końcu się udało i z Hubble'a nadeszły informacje, że całe przełączanie się udało. Hubble nie po raz pierwszy pracuje na systemach zapasowych. W 2008 roku dokonano podobnego przełączenia, gdy doszło do awarii jednego z modułów Science Instrument and Command & Data Handling (SI C&DH). Poddczas ostatniej misji serwisowej do Hubble'a, w 2009 roku, wymieniono cały SI C&DH, znakomicie wydłużając czas pracy teleskopu. Tym razem przyczyną awarii był Power Control Unit odpowiedzialny za zapewnienie stałego napięcia. « powrót do artykułu
  6. Inżynierowie NASA wciąż badają przyczynę awarii Teleskopu Hubble'a, do której doszło 13 czerwca. Wiemy, że problem dotyczy tzw. payload computer, odpowiedzialnego za kontrolę i koordynację urządzeń naukowych teleskopu. Sam teleskop jest w dobrym stanie, jego instrumenty są sprawne i zostały automatycznie wprowadzone w tryb bezpieczny. Teleskop Hubble'a wyposażony jest w dwa payload computers. Oba znajdują się w module o nazwie Science Instrument and Command and Data Handling (SI C&DH). Jeden z nich to komputer zapasowy. Każdy z tych komputerów składa się z Central Processing Module (CPM), czyli sekcji przetwarzającej komendy dla instrumentów naukowych, Standard Interface (STINT), zapewniającego połączenie pomiędzy CPM a innymi podzespołami, szyny komunikacyjnej oraz jednego aktywnego i trzech zapasowych modułów pamięci. W dniach 23 i 24 czerwca przeprowadzono dodatkowe testy, w czasie których po raz pierwszy w przestrzeni kosmicznej został włączony zapasowy payload computer. Testy wykazały, że w wielu różnych kombinacjach sprzętowych podstawowego i zapasowego komputera występuje ten sam błąd, nie udaje się zapisywać i odczytywać komend w pamięci. Jako, że jest mało prawdopodobne, by awaria dotknęła wszystkich elementów, z których zbudowane są oba komputery, inżynierowie sprawdzają też inny sprzęt z SI C&DH, w tym Command Unit/Science Data Formatter (CU/SDF). Element CU formatuje oraz wysyła komendy i dane do konkretnych lokalizacji, SDF odbiera dane z instrumentów naukowych i przekazuje do wysłania na Ziemię. Testowany jest również regulator napięcia, gdyż podobne objawy mogą wystąpić, jeśli do komputerów trafia prąd o niewłaściwym napięciu. Na pokładzie Hubble'a znajdują się zapasowy regulator napięcia oraz CU/SDF, więc mogą być one włączone w razie potrzeby. « powrót do artykułu
  7. Mniej niż tydzień po tym, jak doszło do awaryjnego przejścia Teleskopu Hubble'a w tryb bezpieczny, to samo spotkało kolejny z kosmicznych teleskopów NASA – Chandra X-ray Observatory. Amerykańska agencja poinformowała, że Chandra, prawdopodobnie z powodów problemów z żyroskopem, wprowadził się w tryb bezpieczny. Kilka dni wcześniej również problemy z żyroskopem spowodowały włączenie trybu bezpiecznego w Teleskopie Hubble'a. Oba kosmiczne teleskopy to niezwykle ważne, zasłużone narzędzia naukowe. Oba są też mocno leciwe i służą już wielokrotnie dłużej, niż planowano. Hubble liczy sobie 28 lat, a Chandra – 19. Obecnie kontrolerzy lotu pracują nad przywróceniem ich do normalnej pracy. Gdy awarii uległ podstawowy żyroskop Hubble'a, włączono żyroskop zapasowy. Jednak okazało się, że nie pracuje on jak należy. Co prawda prawidłowo śledzi on ruchy teleskopu, ale informuje, że urządzenie obraca się o rząd wielkości szybciej, niż ma to miejsce w rzeczywistości. Jest to o tyle problemem, że gdy Hubble jest precyzyjnie wycelowany w jakiś obiekt, żyroskop pracuje w bardziej czułym trybie, niż podczas zmiany położenia Hubble'a. Jako, że źle przekazuje on informacje o obrotach teleskopu, to w tym bardziej czułym trybie nie jest w stanie wyłapać minimalnych ruchów teleskopu, które powinien w tym czasie badać. Jeśli operatorom Hubble'a uda się naprawić problem z żyroskopami, to urządzenie powróci do pracy w standardowym trybie, w którym korzysta z 3 żyroskopów. Jeśli się nie uda, Hubble będzie korzystał z 1 żyroskopu, co, jak zapewnia NASA, pozwoli mu na przekazywanie doskonałej jakości obrazów przez kolejne lata. W 2009 roku, podczas ostatniej misji serwisowej na Hubble'a, astronauci zamontowali tam 6 żyroskopów. Od tamtej pory zawiodły trzy z nich. Przewidywano, że po tej misji Hubble będzie pracował jeszcze przez 5 lat. Minęło już 9 lat, a NASA obiecuje, że znany teleskop posłuży jeszcze przez wiele lat. Jeśli zaś chodzi o Chandra X-ray Observatory, to jeszcze nie wiadomo, co się stało, ale prawdopodobnie mamy do czynienia z awarią żyroskopu. Analizy wykazały, że przejście w tryb bezpieczny odbyło się bez problemów, panele słoneczne skierowane są w stronę Słońca, więc teleskop ma zapewnioną energię, a jego lustra są odsunięte od Słońca. Chandra został zaprojektowany tak, by pracować przez 5 lat. Także i on, jak zapewnia NASA, ma przed sobą jeszcze wiele lat pracy,. « powrót do artykułu
×
×
  • Create New...